Monte Carlo DropBlock for modeling uncertainty in object detection

计算机科学 人工智能 卷积神经网络 深度学习 目标检测 分割 蒙特卡罗方法 不确定度量化 机器学习 变压器 贝叶斯推理 贝叶斯概率 模式识别(心理学) 数学 工程类 统计 电气工程 电压
作者
Sai Harsha Yelleni,Deepshikha Kumari,P. K. Srijith,C. Krishna Mohan
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:146: 110003-110003 被引量:28
标识
DOI:10.1016/j.patcog.2023.110003
摘要

With the advancements made in deep learning, computer vision problems have seen a great improvement in performance. However, in many real-world applications such as autonomous driving vehicles, the risk associated with incorrect predictions of objects or segmentation of images is very high. Standard deep learning models for object detection and segmentation such as YOLO models are often overconfident in their predictions and do not take into account the uncertainty in predictions on out-of-distribution data. In this work, we propose an efficient and effective approach, Monte-Carlo DropBlock (MC-DropBlock), to model uncertainty in YOLO and convolutional vision Transformers for object detection. The proposed approach applies drop-block during training time and testing time on the convolutional layer of the deep learning models such as YOLO and convolutional transformer. We theoretically show that this leads to a Bayesian convolutional neural network capable of capturing the epistemic uncertainty in the model. Additionally, we capture the aleatoric uncertainty in the data using a Gaussian likelihood. We demonstrate the effectiveness of the proposed approach on modeling uncertainty in object detection and segmentation tasks using out-of-distribution experiments. Experimental results show that MC-DropBlock improves the generalization, calibration, and uncertainty modeling capabilities of YOLO models and convolutional Transformer models for object detection and segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文武贝发布了新的文献求助10
刚刚
CipherSage应助你想读博吗采纳,获得10
3秒前
4秒前
夏梦园完成签到,获得积分20
5秒前
阳光彩虹小白马完成签到 ,获得积分10
5秒前
cassie发布了新的文献求助10
6秒前
Lucas应助mf采纳,获得10
7秒前
MD99发布了新的文献求助10
9秒前
wangyuchen发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
杨馨蕊完成签到 ,获得积分10
14秒前
sb完成签到,获得积分10
14秒前
15秒前
王sir完成签到,获得积分10
15秒前
Khaos_0929发布了新的文献求助10
17秒前
陈平安完成签到,获得积分10
18秒前
18秒前
19秒前
20秒前
nanyuan123发布了新的文献求助30
21秒前
半糖完成签到,获得积分10
21秒前
SYLH应助ShihanZhong采纳,获得10
21秒前
111完成签到,获得积分10
22秒前
24秒前
lrl发布了新的文献求助10
24秒前
夏梦园发布了新的文献求助10
24秒前
了0完成签到 ,获得积分10
26秒前
锥子完成签到,获得积分10
27秒前
脑洞疼应助清新的苑博采纳,获得10
27秒前
Khaos_0929完成签到,获得积分10
28秒前
28秒前
端庄千青完成签到,获得积分10
29秒前
29秒前
mf发布了新的文献求助10
29秒前
30秒前
31秒前
凉的白开完成签到,获得积分10
31秒前
joey2024完成签到,获得积分20
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950988
求助须知:如何正确求助?哪些是违规求助? 3496397
关于积分的说明 11081817
捐赠科研通 3226886
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 800997