Deep reinforcement learning-based collision avoidance for an autonomous ship

避碰 方向舵 碰撞 路径(计算) 计算机科学 航向(导航) 强化学习 工程类 模拟 人工智能 海洋工程 计算机安全 航空航天工程 程序设计语言
作者
Do-Hyun Chun,Myung-Il Roh,Hye-Won Lee,Jisang Ha,Donghun Yu
出处
期刊:Ocean Engineering [Elsevier]
卷期号:234: 109216-109216 被引量:96
标识
DOI:10.1016/j.oceaneng.2021.109216
摘要

Social interest in autonomous navigation systems for autonomous ships is also increasing. For a robust autonomous navigation system, the location, speed, and direction of the ship and other ships must be identified in real time, and collision avoidance should be performed at an appropriate time by considering the collision risk. In this study, we proposed a collision avoidance method that quantitatively assesses the collision risk and then generates an avoidance path. First, to assess the collision risk, a collision risk assessment method based on the ship domain and the closest point of approach (CPA) was proposed. The ship domain is created with an asymmetric shape considering manoeuvring performance and the COLREGs. The CPA is used to assess quantitative collision risk value. Subsequently, a path generation algorithm based on deep reinforcement learning (DRL) was proposed to determine the avoidance time and to generate an avoidance path complying the COLREGs for the most dangerous ship in terms of collision risk. The information of own ship and target ship such as location, speed, heading, collision risk is used as the input state, and the rudder angle of own ship is set as the output action of the DRL. The cost function related to the path following and the collision avoidance is defined as the reward of the DRL-based collision avoidance method. Additionally, the DRL modes are defined to navigate the flexible avoidance path by changing the ratio between the path following and the collision avoidance. To verify the proposed method, we compared the collision avoidance method with the A* algorithm, which is a traditional path planning algorithm, and analyzed the results for various scenarios. The proposed method reliably avoided collisions through flexible paths for complex and unexpected changes in situations compared to the A* algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐小鸭发布了新的文献求助10
刚刚
无糖零脂发布了新的文献求助10
1秒前
搜集达人应助娜行采纳,获得10
1秒前
科研小白完成签到,获得积分10
2秒前
自然千山发布了新的文献求助10
5秒前
小二郎应助完美的海秋采纳,获得10
6秒前
7秒前
8秒前
9秒前
9秒前
10秒前
11秒前
科研通AI2S应助葳葳采纳,获得10
11秒前
扎心应助岁杪望舒采纳,获得10
11秒前
12秒前
共享精神应助cctv18采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得30
13秒前
cxy007发布了新的文献求助10
13秒前
ding应助科研通管家采纳,获得10
13秒前
pluto应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
dtjvb应助科研通管家采纳,获得10
13秒前
chengmin发布了新的文献求助10
13秒前
iNk应助科研通管家采纳,获得20
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
RubySIU应助科研通管家采纳,获得10
13秒前
iNk应助科研通管家采纳,获得20
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
博尔塔拉完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
呐呐发布了新的文献求助10
16秒前
cctv18给lwzzzzz的求助进行了留言
16秒前
加油少年完成签到,获得积分10
18秒前
一包辣条发布了新的文献求助10
18秒前
要爱国发布了新的文献求助10
19秒前
科研通AI2S应助chengmin采纳,获得10
19秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244023
求助须知:如何正确求助?哪些是违规求助? 2887881
关于积分的说明 8250101
捐赠科研通 2556472
什么是DOI,文献DOI怎么找? 1384639
科研通“疑难数据库(出版商)”最低求助积分说明 649901
邀请新用户注册赠送积分活动 625972