Deep reinforcement learning-based collision avoidance for an autonomous ship

避碰 方向舵 碰撞 路径(计算) 计算机科学 航向(导航) 强化学习 工程类 模拟 人工智能 海洋工程 计算机安全 航空航天工程 程序设计语言
作者
Do-Hyun Chun,Myung-Il Roh,Hye-Won Lee,Jisang Ha,Donghun Yu
出处
期刊:Ocean Engineering [Elsevier]
卷期号:234: 109216-109216 被引量:96
标识
DOI:10.1016/j.oceaneng.2021.109216
摘要

Social interest in autonomous navigation systems for autonomous ships is also increasing. For a robust autonomous navigation system, the location, speed, and direction of the ship and other ships must be identified in real time, and collision avoidance should be performed at an appropriate time by considering the collision risk. In this study, we proposed a collision avoidance method that quantitatively assesses the collision risk and then generates an avoidance path. First, to assess the collision risk, a collision risk assessment method based on the ship domain and the closest point of approach (CPA) was proposed. The ship domain is created with an asymmetric shape considering manoeuvring performance and the COLREGs. The CPA is used to assess quantitative collision risk value. Subsequently, a path generation algorithm based on deep reinforcement learning (DRL) was proposed to determine the avoidance time and to generate an avoidance path complying the COLREGs for the most dangerous ship in terms of collision risk. The information of own ship and target ship such as location, speed, heading, collision risk is used as the input state, and the rudder angle of own ship is set as the output action of the DRL. The cost function related to the path following and the collision avoidance is defined as the reward of the DRL-based collision avoidance method. Additionally, the DRL modes are defined to navigate the flexible avoidance path by changing the ratio between the path following and the collision avoidance. To verify the proposed method, we compared the collision avoidance method with the A* algorithm, which is a traditional path planning algorithm, and analyzed the results for various scenarios. The proposed method reliably avoided collisions through flexible paths for complex and unexpected changes in situations compared to the A* algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxh发布了新的文献求助10
1秒前
1秒前
受伤的无心完成签到 ,获得积分10
2秒前
平淡从霜发布了新的文献求助10
2秒前
6秒前
zxh完成签到,获得积分10
9秒前
9秒前
1111111发布了新的文献求助10
11秒前
淘气乌龙茶完成签到 ,获得积分10
11秒前
SciGPT应助危机的阁采纳,获得10
13秒前
生动的若之完成签到 ,获得积分10
13秒前
冷酷莫言发布了新的文献求助10
15秒前
17秒前
lucky完成签到 ,获得积分10
18秒前
18秒前
19秒前
zhongyinanke完成签到 ,获得积分10
20秒前
666发布了新的文献求助10
22秒前
李先生完成签到 ,获得积分10
25秒前
古藤完成签到 ,获得积分10
26秒前
风中的碧玉完成签到,获得积分10
27秒前
nini完成签到 ,获得积分10
28秒前
506407完成签到,获得积分10
29秒前
蓝天发布了新的文献求助10
30秒前
科研通AI6应助加油采纳,获得10
31秒前
kroll发布了新的文献求助10
31秒前
LL完成签到 ,获得积分10
32秒前
33秒前
33秒前
Carolina完成签到,获得积分10
34秒前
繁荣的立果完成签到,获得积分10
39秒前
危机的阁发布了新的文献求助10
40秒前
晓汁完成签到 ,获得积分10
43秒前
43秒前
共享精神应助白天乐夜雨采纳,获得10
44秒前
小巧寻桃发布了新的文献求助10
48秒前
交大市长完成签到,获得积分10
49秒前
今后应助刘芋叶采纳,获得10
51秒前
香蕉诗蕊应助加油采纳,获得10
52秒前
琦琦完成签到 ,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560490
求助须知:如何正确求助?哪些是违规求助? 4645747
关于积分的说明 14676028
捐赠科研通 4586936
什么是DOI,文献DOI怎么找? 2516635
邀请新用户注册赠送积分活动 1490182
关于科研通互助平台的介绍 1461055