Deep reinforcement learning-based collision avoidance for an autonomous ship

避碰 方向舵 碰撞 路径(计算) 计算机科学 航向(导航) 强化学习 工程类 模拟 人工智能 海洋工程 计算机安全 航空航天工程 程序设计语言
作者
Do-Hyun Chun,Myung-Il Roh,Hye-Won Lee,Jisang Ha,Donghun Yu
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:234: 109216-109216 被引量:96
标识
DOI:10.1016/j.oceaneng.2021.109216
摘要

Social interest in autonomous navigation systems for autonomous ships is also increasing. For a robust autonomous navigation system, the location, speed, and direction of the ship and other ships must be identified in real time, and collision avoidance should be performed at an appropriate time by considering the collision risk. In this study, we proposed a collision avoidance method that quantitatively assesses the collision risk and then generates an avoidance path. First, to assess the collision risk, a collision risk assessment method based on the ship domain and the closest point of approach (CPA) was proposed. The ship domain is created with an asymmetric shape considering manoeuvring performance and the COLREGs. The CPA is used to assess quantitative collision risk value. Subsequently, a path generation algorithm based on deep reinforcement learning (DRL) was proposed to determine the avoidance time and to generate an avoidance path complying the COLREGs for the most dangerous ship in terms of collision risk. The information of own ship and target ship such as location, speed, heading, collision risk is used as the input state, and the rudder angle of own ship is set as the output action of the DRL. The cost function related to the path following and the collision avoidance is defined as the reward of the DRL-based collision avoidance method. Additionally, the DRL modes are defined to navigate the flexible avoidance path by changing the ratio between the path following and the collision avoidance. To verify the proposed method, we compared the collision avoidance method with the A* algorithm, which is a traditional path planning algorithm, and analyzed the results for various scenarios. The proposed method reliably avoided collisions through flexible paths for complex and unexpected changes in situations compared to the A* algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Oli发布了新的文献求助10
1秒前
雪白紫夏发布了新的文献求助10
1秒前
3秒前
打工科研完成签到 ,获得积分10
5秒前
英俊的铭应助hjl90527采纳,获得10
6秒前
田様应助txy采纳,获得30
7秒前
Oli完成签到,获得积分10
8秒前
虫二完成签到,获得积分10
10秒前
整齐谷芹完成签到,获得积分10
11秒前
一路生花完成签到,获得积分10
12秒前
luyuheng95完成签到,获得积分10
13秒前
14秒前
llp完成签到,获得积分20
16秒前
1680Y完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
自信的碧发布了新的文献求助10
18秒前
雪白紫夏完成签到,获得积分10
18秒前
研友_VZG7GZ应助整齐谷芹采纳,获得10
18秒前
欣欣欣完成签到,获得积分20
18秒前
bing完成签到,获得积分10
20秒前
希望天下0贩的0应助米娅采纳,获得10
22秒前
lym发布了新的文献求助10
22秒前
无花果应助kiki采纳,获得10
23秒前
24秒前
hpp完成签到,获得积分10
26秒前
旋转木马9个完成签到 ,获得积分10
26秒前
Unlung完成签到,获得积分10
27秒前
无花果应助和谐依珊采纳,获得10
27秒前
自信的碧完成签到,获得积分10
27秒前
28秒前
NexusExplorer应助Ghhhhn采纳,获得30
29秒前
瑁柏完成签到,获得积分10
29秒前
felix完成签到,获得积分10
30秒前
30秒前
JamesPei应助瑁柏采纳,获得10
32秒前
歌尔德蒙完成签到 ,获得积分10
32秒前
温暖的萤发布了新的文献求助50
33秒前
Judy完成签到 ,获得积分0
33秒前
NexusExplorer应助oneonlycrown采纳,获得10
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961059
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135400
捐赠科研通 3239738
什么是DOI,文献DOI怎么找? 1790416
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150