清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep reinforcement learning-based collision avoidance for an autonomous ship

避碰 方向舵 碰撞 路径(计算) 计算机科学 航向(导航) 强化学习 工程类 模拟 人工智能 海洋工程 计算机安全 航空航天工程 程序设计语言
作者
Do-Hyun Chun,Myung-Il Roh,Hye-Won Lee,Jisang Ha,Donghun Yu
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:234: 109216-109216 被引量:96
标识
DOI:10.1016/j.oceaneng.2021.109216
摘要

Social interest in autonomous navigation systems for autonomous ships is also increasing. For a robust autonomous navigation system, the location, speed, and direction of the ship and other ships must be identified in real time, and collision avoidance should be performed at an appropriate time by considering the collision risk. In this study, we proposed a collision avoidance method that quantitatively assesses the collision risk and then generates an avoidance path. First, to assess the collision risk, a collision risk assessment method based on the ship domain and the closest point of approach (CPA) was proposed. The ship domain is created with an asymmetric shape considering manoeuvring performance and the COLREGs. The CPA is used to assess quantitative collision risk value. Subsequently, a path generation algorithm based on deep reinforcement learning (DRL) was proposed to determine the avoidance time and to generate an avoidance path complying the COLREGs for the most dangerous ship in terms of collision risk. The information of own ship and target ship such as location, speed, heading, collision risk is used as the input state, and the rudder angle of own ship is set as the output action of the DRL. The cost function related to the path following and the collision avoidance is defined as the reward of the DRL-based collision avoidance method. Additionally, the DRL modes are defined to navigate the flexible avoidance path by changing the ratio between the path following and the collision avoidance. To verify the proposed method, we compared the collision avoidance method with the A* algorithm, which is a traditional path planning algorithm, and analyzed the results for various scenarios. The proposed method reliably avoided collisions through flexible paths for complex and unexpected changes in situations compared to the A* algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千空完成签到 ,获得积分10
1秒前
无一完成签到 ,获得积分0
8秒前
Owen应助Guozixin采纳,获得10
12秒前
11关闭了11文献求助
18秒前
zm完成签到 ,获得积分10
28秒前
l老王完成签到 ,获得积分0
31秒前
zhilianghui0807完成签到 ,获得积分0
31秒前
顾矜应助十分十分佳采纳,获得10
36秒前
MISA完成签到 ,获得积分10
46秒前
俊逸的香萱完成签到 ,获得积分10
59秒前
11发布了新的文献求助30
1分钟前
1分钟前
迷人的沛山完成签到 ,获得积分10
1分钟前
1分钟前
简单完成签到 ,获得积分10
1分钟前
研友_LN25rL完成签到,获得积分10
1分钟前
勤恳的语蝶完成签到 ,获得积分10
2分钟前
顾矜应助我亦化身东海去采纳,获得10
2分钟前
枯叶蝶完成签到 ,获得积分10
2分钟前
笨蛋美女完成签到 ,获得积分10
2分钟前
拼搏书琴完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
郭磊完成签到 ,获得积分10
3分钟前
3分钟前
Guozixin发布了新的文献求助10
3分钟前
青青草完成签到,获得积分10
3分钟前
科研通AI2S应助袁青寒采纳,获得10
4分钟前
fogsea完成签到,获得积分0
4分钟前
4分钟前
4分钟前
Cassiopiea19发布了新的文献求助30
4分钟前
wayne完成签到 ,获得积分10
4分钟前
yindi1991完成签到 ,获得积分10
4分钟前
可爱的函函应助Cassiopiea19采纳,获得10
4分钟前
科研通AI5应助Guozixin采纳,获得30
4分钟前
冉景平完成签到 ,获得积分10
4分钟前
落后平露完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926941
求助须知:如何正确求助?哪些是违规求助? 4196392
关于积分的说明 13032711
捐赠科研通 3968832
什么是DOI,文献DOI怎么找? 2175128
邀请新用户注册赠送积分活动 1192288
关于科研通互助平台的介绍 1102773