Deep reinforcement learning-based collision avoidance for an autonomous ship

避碰 方向舵 碰撞 路径(计算) 计算机科学 航向(导航) 强化学习 工程类 模拟 人工智能 海洋工程 计算机安全 航空航天工程 程序设计语言
作者
Do-Hyun Chun,Myung-Il Roh,Hye-Won Lee,Jisang Ha,Donghun Yu
出处
期刊:Ocean Engineering [Elsevier]
卷期号:234: 109216-109216 被引量:96
标识
DOI:10.1016/j.oceaneng.2021.109216
摘要

Social interest in autonomous navigation systems for autonomous ships is also increasing. For a robust autonomous navigation system, the location, speed, and direction of the ship and other ships must be identified in real time, and collision avoidance should be performed at an appropriate time by considering the collision risk. In this study, we proposed a collision avoidance method that quantitatively assesses the collision risk and then generates an avoidance path. First, to assess the collision risk, a collision risk assessment method based on the ship domain and the closest point of approach (CPA) was proposed. The ship domain is created with an asymmetric shape considering manoeuvring performance and the COLREGs. The CPA is used to assess quantitative collision risk value. Subsequently, a path generation algorithm based on deep reinforcement learning (DRL) was proposed to determine the avoidance time and to generate an avoidance path complying the COLREGs for the most dangerous ship in terms of collision risk. The information of own ship and target ship such as location, speed, heading, collision risk is used as the input state, and the rudder angle of own ship is set as the output action of the DRL. The cost function related to the path following and the collision avoidance is defined as the reward of the DRL-based collision avoidance method. Additionally, the DRL modes are defined to navigate the flexible avoidance path by changing the ratio between the path following and the collision avoidance. To verify the proposed method, we compared the collision avoidance method with the A* algorithm, which is a traditional path planning algorithm, and analyzed the results for various scenarios. The proposed method reliably avoided collisions through flexible paths for complex and unexpected changes in situations compared to the A* algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bjbbh完成签到,获得积分10
1秒前
Skyrin发布了新的文献求助10
1秒前
1秒前
阿蒙完成签到,获得积分10
2秒前
传奇3应助个木采纳,获得10
2秒前
2秒前
ShawnWei完成签到,获得积分10
2秒前
飘逸秋荷完成签到,获得积分10
2秒前
年年完成签到,获得积分10
2秒前
3秒前
3秒前
四季刻歌发布了新的文献求助20
3秒前
乐乐应助努力学习采纳,获得10
3秒前
3秒前
wwt完成签到,获得积分10
3秒前
3秒前
666完成签到,获得积分10
4秒前
Ripples完成签到,获得积分10
4秒前
5秒前
5秒前
赵哈哈完成签到,获得积分10
5秒前
6秒前
7秒前
小柠檬发布了新的文献求助10
7秒前
he发布了新的文献求助10
7秒前
7秒前
CodeCraft应助啵啵采纳,获得10
7秒前
8秒前
otaro发布了新的文献求助30
8秒前
贝利亚发布了新的文献求助10
8秒前
清脆的台灯完成签到,获得积分10
9秒前
范范完成签到 ,获得积分10
9秒前
星辰大海应助starry采纳,获得10
10秒前
科研通AI5应助Xxxnnian采纳,获得30
10秒前
执着的小蘑菇完成签到,获得积分10
11秒前
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
顺顺发布了新的文献求助10
11秒前
上官若男应助科研通管家采纳,获得30
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678