达拉图穆马
CD38
癌症研究
抗体
多发性骨髓瘤
硼替佐米
抗原
医学
化学
分子生物学
生物
免疫学
细胞生物学
干细胞
川地34
作者
Marie‐Agnès Doucey,Blandine Pouleau,Carole Estoppey,Cian Stutz,Amélie Croset,Amélie Laurendon,Thierry Monney,Mégane Pluess,Christelle Ries-Fecourt,Julie Macoin,Riccardo Turrini,Perrine Suere,Moustapha Mbow,Emilie Nallet,Adam Drake,Mario Perro,Stanislas Blein
标识
DOI:10.1200/jco.2021.39.15_suppl.8044
摘要
8044 Background: ISB 1342 is a bispecific antibody heterodimer based on the Ichnos proprietary Bispecific Engagement by Antibodies based on T cell receptor (BEAT) platform. ISB 1342 is a first-in-class CD38 T cell engager under investigation in subjects with relapsed multiple myeloma refractory to proteasome inhibitors (PIs), immunomodulators (IMiDs) and daratumumab (study ISB 1342-101). Methods: ISB 1342 was engineered with a single chain variable fragment (scFv) arm that specifically recognizes a cluster of differentiation (CD)3-epsilon (CD3ε) and a fragment antigen binding (Fab) arm which specifically recognizes CD38 and does not compete with daratumumab. By co-engaging CD3ε on T cells and CD38 on tumor cells, ISB 1342 redirects T cells to kill CD38-expressing tumor cells. This mechanism of action is differentiated from existing monospecific CD38 targeting therapies and was designed to overcome resistance to daratumumab in multiple myeloma. Results: In vitro, ISB 1342 killed a large range of CD38-expressing tumor cell lines (EC50:12 to 90 pM) with 8 to 239-fold superior efficacy than daratumumab. ISB 1342 was also able to efficiently kill CD38 low-intermediate-expressing tumor cells that were poorly killed by daratumumab. ISB 1342 retained the potency to kill CD38 low-intermediate-expressing tumor cells when used in sequential or concomitant combination with daratumumab. In addition, the presence of soluble CD38 or glucocorticoid did not impact ISB 1342 killing potency. ISB 1342 was constructed with a double LALA mutation that dampens the binding to Fcγ receptors and C1q. Consistently, ISB 1342 showed only residual Fc-mediated effector functions and its mechanism of tumor cell killing critically relies on the engagement and the activation of T lymphocytes. ISB 1342 showed a favorable on target specificity profile in vitro and was unable to activate T cells in the absence of CD38 positive target cells. Further, ISB 1342-induced tumor cell killing was not associated with a detectable T cell fratricide in vitro. Finally, the potency of ISB 1342 was assessed in vivo in a therapeutic model of a subcutaneously established Daudi tumor co-xenografted with human PBMCs. In marked contrast to daratumumab, which induced only a partial tumor control, ISB 1342 induced complete tumor eradication when injected intravenously weekly at 0.5 mg/kg. As anticipated, the ISB 1342 control molecule (ISB 1342_13DU) made of an irrelevant CD38 binder failed to control tumor growth. The release of the Granzyme A and B, TNF-alpha and CXCL-10 in the tumor micro-environment one week post-treatment was strongly and significantly increased by ISB 1342 but not by daratumumab and ISB 1342_13DU; this represents a correlate of anti-tumor immunity associated with ISB 1342 efficacy in vivo. Conclusions: Hence the higher potency of ISB 1342 relative to daratumumab supports the ongoing clinical development in multiple myeloma patients.
科研通智能强力驱动
Strongly Powered by AbleSci AI