Phononic crystals as a platform for experimental physics: The direct observation of Klein tunneling

量子隧道 物理 齐特贝韦贡 声子 Dirac(视频压缩格式) 电子 凝聚态物理 工作(物理) 色散(光学) 布洛赫振荡 量子力学 中微子
作者
Chengzhi Shi,Xue Jiang,Zhenglu Li,Siqi Wang,Yuan Wang,Sui Yang,Steven G. Louie,Xiang Zhang
出处
期刊:Journal of the Acoustical Society of America [Acoustical Society of America]
卷期号:149 (4_Supplement): A79-A79
标识
DOI:10.1121/10.0004574
摘要

Phononic crystals consist of periodic Mie scatterers that modulate the band structure through multi-scattering to control acoustic wave propagation. Recently, the Dirac cone dispersion of phononic crystals with triangular or hexagonal lattices has been used to demonstrate interesting physics such as topologically protected edge states and Zitterbewegung effects. In this work, we present phononic crystals with triangular lattices that can be used as a platform to directly observe Klein tunneling. Klein tunneling is an important quantum mechanical physics proposed in 1929 for high-energy electrons. Klein suggested that electrons that are accelerated to the relativistic regime will tunnel through potential barriers with 100% probability regardless the width and height of the potential barrier. However, Klein tunneling has never been directly observed in quantum mechanics and solid state physics due to the difficulties in satisfying the stringent requirements. Here, we designed phononic crystals with Dirac cone dispersion at which the phonons behave as quasi-particles in the relativistic regime. Near total transmissions of the phonons through potential barriers were measured that are independent from the width and height of the potential barrier. Our results provide the first direct observation of Klein tunneling. This work will inspire a new type of applications that uses phononic crystals as a platform for the experimental studies of wave mechanics and quantum physics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ho完成签到,获得积分10
刚刚
3秒前
梦若浮生完成签到,获得积分10
6秒前
6秒前
9秒前
传奇3应助随风556采纳,获得10
10秒前
Evander完成签到,获得积分10
10秒前
10秒前
Lei发布了新的文献求助30
11秒前
Yingqian_Zhang完成签到 ,获得积分10
12秒前
12秒前
流香发布了新的文献求助10
12秒前
12秒前
上官若男应助留胡子的松采纳,获得10
13秒前
彤彤发布了新的文献求助10
15秒前
赫灵竹完成签到,获得积分10
18秒前
18秒前
lllll1243完成签到,获得积分10
18秒前
上官若男应助zzzy采纳,获得10
21秒前
随风556发布了新的文献求助10
24秒前
Pursue。完成签到,获得积分10
26秒前
26秒前
27秒前
27秒前
贪玩的寄松完成签到,获得积分10
29秒前
邵梁健完成签到,获得积分20
30秒前
大花发布了新的文献求助10
30秒前
33秒前
健壮的紫夏完成签到,获得积分10
34秒前
FashionBoy应助叶赛文采纳,获得10
36秒前
iamdnn发布了新的文献求助10
38秒前
39秒前
41秒前
41秒前
随风556完成签到,获得积分10
42秒前
浮游应助雨沐风采纳,获得10
44秒前
阳光易巧发布了新的文献求助10
44秒前
45秒前
叶枫寒发布了新的文献求助10
45秒前
不倒翁发布了新的文献求助10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288310
求助须知:如何正确求助?哪些是违规求助? 4440162
关于积分的说明 13823974
捐赠科研通 4322413
什么是DOI,文献DOI怎么找? 2372571
邀请新用户注册赠送积分活动 1368027
关于科研通互助平台的介绍 1331679