数学
仿射变换
乙状窦函数
变量(数学)
背景(考古学)
离散数学
应用数学
纯数学
人工神经网络
数学分析
计算机科学
人工智能
古生物学
生物
标识
DOI:10.1162/neco.1991.3.4.617
摘要
We show that Kolmogorov's theorem on representations of continuous functions of n-variables by sums and superpositions of continuous functions of one variable is relevant in the context of neural networks. We give a version of this theorem with all of the one-variable functions approximated arbitrarily well by linear combinations of compositions of affine functions with some given sigmoidal function. We derive an upper estimate of the number of hidden units.
科研通智能强力驱动
Strongly Powered by AbleSci AI