Three-dimensional mapping of soil organic matter content using soil type–specific depth functions

土壤科学 土壤类型 有机质 环境科学 内容(测量理论) 土壤有机质 数学 土壤水分 化学 数学分析 有机化学
作者
B. Kempen,D.J. Brus,J.J. Stoorvogel
出处
期刊:Geoderma [Elsevier BV]
卷期号:162 (1-2): 107-123 被引量:105
标识
DOI:10.1016/j.geoderma.2011.01.010
摘要

Abstract This paper proposes a method for mapping depth functions of soil organic matter (SOM) that combines general pedological knowledge with geostatistical modeling. A pedometric soil map that represents soil type at any location with a probability distribution formed the starting-point. For each of the ten soil types depicted on this map a depth function structure was defined that describes the variation of SOM over depth based on pedological knowledge about soil profile morphology. To this end five depth function building blocks were defined, referred to as ‘model horizons’. For each soil type the depth function structure was obtained by stacking a subset of model horizons. The parameters of the ten soil type–specific depth functions were calibrated with data from soil profile descriptions and spatially interpolated using environmental covariates as predictors. The predicted parameters and the soil-type specific depth function structures then allowed us to construct the depth function of SOM for each soil type at each prediction site. By combining the soil type–specific depth functions with the probability distributions of the soil types, a probability distribution of depth functions was obtained at each location in the study area. The soil type–specific depth functions and their associated probabilities were used to map the SOM stock for depth intervals 0–30 cm, 30–60 cm, 60–90 cm, and 0–90 cm. The mapped SOM stocks were validated with an independent probability sample. R 2 -values ranged between 0.09 and 0.75, with 0.46 for the 0–90 cm layer. The RSME was largest for the 30–60 cm layer (13.4 kg/m 2 ). This is typically the layer with the largest within-soil type and between-soil type variation of SOM and is therefore the most challenging to predict. Similar to other studies better predictions were found for the top layer than for subsurface layers, which illustrates a general challenge of capturing subsurface variation of soil properties by our pedometric models. The pedometric approach to three-dimensional mapping of SOM presented in this paper is closely related to the conventional approach that represents depth distribution of soil properties with representative profile descriptions that are associated to the map units of a soil type map. A comparison of our pedometric approach with the conventional approach showed that there was little difference in performance. However, our modeled depth functions might give a more realistic representation of the vertical variation than the discrete (stepped) functions based on representative soil profile descriptions and thus might provide better predictions of the SOM content at small depth intervals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
干净的怜珊完成签到,获得积分10
刚刚
Stone发布了新的文献求助10
1秒前
unique发布了新的文献求助10
1秒前
明理易巧发布了新的文献求助10
1秒前
2秒前
晨曦发布了新的文献求助20
2秒前
今后应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得30
4秒前
4秒前
清爽乐菱应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
Hello应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
小毛线完成签到 ,获得积分10
5秒前
5秒前
5秒前
空2完成签到 ,获得积分0
6秒前
阮楷瑞发布了新的文献求助10
6秒前
小熊发布了新的文献求助20
7秒前
Lucas应助liwayou采纳,获得10
8秒前
程希完成签到,获得积分10
8秒前
诚心靳完成签到,获得积分10
9秒前
lxy发布了新的文献求助10
9秒前
Owen应助淡淡代玉采纳,获得10
9秒前
CJW完成签到,获得积分20
9秒前
Ava应助alisa_yu采纳,获得10
9秒前
9秒前
小鱼完成签到,获得积分10
9秒前
gumausi完成签到,获得积分10
10秒前
夏轩FromHard完成签到,获得积分10
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974463
求助须知:如何正确求助?哪些是违规求助? 3518823
关于积分的说明 11196212
捐赠科研通 3255008
什么是DOI,文献DOI怎么找? 1797655
邀请新用户注册赠送积分活动 877052
科研通“疑难数据库(出版商)”最低求助积分说明 806130