化学
体内分布
核苷
体内
肿瘤缺氧
标签
正电子发射断层摄影术
核苷类似物
缺氧(环境)
体外
动力学
亲核取代
放射化学
立体化学
氧气
生物化学
核医学
药物化学
有机化学
物理
放射治疗
内科学
生物
医学
量子力学
生物技术
作者
Masanobu Haga,Mitsuko Takano,Setsuzo Tejima
标识
DOI:10.1016/s0008-6215(00)84925-3
摘要
Positron emission tomography (PET) using fluorine-18 (18F)-labeled 2-nitroimidazole radiotracers has proven useful for assessment of tumor oxygenation. However, the passive diffusion-driven cellular uptake of currently available radiotracers results in slow kinetics and low tumor-to-background ratios. With the aim to develop a compound that is actively transported into cells, 1-(6′-deoxy-6′-[18F]fluoro-β-d-allofuranosyl)-2-nitroimidazole (β-[18F]1), a putative nucleoside transporter substrate, was synthetized by nucleophilic [18F]fluoride substitution of an acetyl protected labeling precursor with a tosylate leaving group (β-6) in a final radiochemical yield of 12 ± 8% (n = 10, based on [18F]fluoride starting activity) in a total synthesis time of 60 min with a specific activity at end of synthesis of 218 ± 58 GBq/μmol (n = 10). Both radiolabeling precursor β-6 and unlabeled reference compound β-1 were prepared in multistep syntheses starting from 1,2:5,6-di-O-isopropylidene-α-d-allofuranose. In vitro experiments demonstrated an interaction of β-1 with SLC29A1 and SLC28A1/2/3 nucleoside transporter as well as hypoxia specific retention of β-[18F]1 in tumor cell lines. In biodistribution studies in healthy mice β-[18F]1 showed homogenous tissue distribution and excellent metabolic stability, which was unaffected by tissue oxygenation. PET studies in tumor bearing mice showed tumor-to-muscle ratios of 2.13 ± 0.22 (n = 4) at 2 h after administration of β-[18F]1. In ex vivo autoradiography experiments β-[18F]1 distribution closely matched staining with the hypoxia marker pimonidazole. In conclusion, β-[18F]1 shows potential as PET hypoxia radiotracer which merits further investigation.
科研通智能强力驱动
Strongly Powered by AbleSci AI