Power Allocation for Robust Distributed Best-Linear-Unbiased Estimation Against Sensing Noise Variance Uncertainty

瑞利衰落 数学优化 数学 信道状态信息 均方误差 上下界 衰退 失真(音乐) 噪音(视频) 计算机科学 统计 解码方法 无线 电信 数学分析 放大器 图像(数学) 带宽(计算) 人工智能
作者
Jwo-Yuh Wu,Tsang-Yi Wang
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:12 (6): 2853-2869 被引量:13
标识
DOI:10.1109/tcomm.2013.050613.121161
摘要

Motivated by the fact that system parameter mismatch occurs in real-world sensing environments, this paper proposes power allocation schemes for robust distributed bestlinear-unbiased estimation (BLUE) that take account of the uncertainty in the local sensing noise levels. Assuming that (i) the sensing noise variance follows a statistical distribution widely used in the literature and (ii) the link channel gains between sensor nodes and the fusion center (FC) are i.i.d. Rayleigh fading, we propose to use the average reciprocal mean square error (ARMSE), averaged with respect to the distributions of sensing noise variance and fading channels, as the distortion measure. A fundamental inequality characterizing the relation between ARMSE and the average mean square error (AMSE) is established to justify the proposed design metric. While the exact formula for ARMSE is difficult to find, we derive an associated closed-form lower bound which involves the incomplete gamma function. To further ease analysis, we further derive a key inequality that specifies the range of the ARMSE lower bound. Particularly, it is shown that the boundary points of this inequality are characterized by a common function, which involves the Gaussian-tail Q(·) and is thus more analytically appealing. By conducting optimization on the basis of such a function, we obtain closed-form robust solutions for two power allocation problems: (i) optimizing distortion metric under a total power constraint, and (ii) minimizing total power under a target distortion requirement. In case that instantaneous channel state information (CSI) is available to the FC, the proposed approach can be easily modified to derive analytic robust power allocation factors best matched to the CSI realizations. Computer simulations evidence the effectiveness of the proposed schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迅速冰颜完成签到,获得积分10
1秒前
Diamond完成签到 ,获得积分10
2秒前
7秒前
俭朴的安阳完成签到 ,获得积分10
12秒前
tong发布了新的文献求助10
13秒前
19秒前
24秒前
ddddddd完成签到 ,获得积分10
25秒前
yidashi发布了新的文献求助10
25秒前
曾无忧完成签到,获得积分10
25秒前
28秒前
传奇3应助过噻采纳,获得10
28秒前
32秒前
林木森森完成签到,获得积分20
33秒前
Bear完成签到 ,获得积分10
34秒前
电磁很快学会应助陈星锦采纳,获得10
35秒前
35秒前
qpp完成签到,获得积分10
37秒前
41秒前
stretchability完成签到,获得积分10
41秒前
青桔柠檬完成签到 ,获得积分10
41秒前
大个应助林..采纳,获得10
43秒前
科研通AI2S应助Sherme采纳,获得10
48秒前
50秒前
笨笨的从阳SJW完成签到,获得积分10
50秒前
xiaohaonumber2完成签到 ,获得积分10
53秒前
MaHongyang完成签到,获得积分10
55秒前
薄荷完成签到,获得积分10
58秒前
59秒前
59秒前
1分钟前
1分钟前
Aries完成签到 ,获得积分10
1分钟前
科研通AI2S应助Minerva采纳,获得10
1分钟前
fly完成签到 ,获得积分10
1分钟前
1分钟前
过噻发布了新的文献求助10
1分钟前
1分钟前
1分钟前
yk发布了新的文献求助10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137561
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787276
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300093
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023