Predicting Protein Function Using Multiple Kernels

计算机科学 分类器(UML) 核(代数) 多核学习 二元分类 人工智能 机器学习 模式识别(心理学) 核方法 算法 支持向量机 数学 组合数学
作者
Guoxian Yu,Huzefa Rangwala,Carlotta Domeniconi,Guoji Zhang,Zili Zhang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:12 (1): 219-233 被引量:33
标识
DOI:10.1109/tcbb.2014.2351821
摘要

High-throughput experimental techniques provide a wide variety of heterogeneous proteomic data sources. To exploit the information spread across multiple sources for protein function prediction, these data sources are transformed into kernels and then integrated into a composite kernel. Several methods first optimize the weights on these kernels to produce a composite kernel, and then train a classifier on the composite kernel. As such, these approaches result in an optimal composite kernel, but not necessarily in an optimal classifier. On the other hand, some approaches optimize the loss of binary classifiers and learn weights for the different kernels iteratively. For multi-class or multi-label data, these methods have to solve the problem of optimizing weights on these kernels for each of the labels, which are computationally expensive and ignore the correlation among labels. In this paper, we propose a method called Predicting Protein Function using Multiple Kernels (ProMK). ProMK iteratively optimizes the phases of learning optimal weights and reduces the empirical loss of multi-label classifier for each of the labels simultaneously. ProMK can integrate kernels selectively and downgrade the weights on noisy kernels. We investigate the performance of ProMK on several publicly available protein function prediction benchmarks and synthetic datasets. We show that the proposed approach performs better than previously proposed protein function prediction approaches that integrate multiple data sources and multi-label multiple kernel learning methods. The codes of our proposed method are available at https://sites.google.com/site/guoxian85/promk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仇书竹发布了新的文献求助10
刚刚
小小小小w完成签到,获得积分10
刚刚
余喆完成签到,获得积分10
1秒前
星辰大海应助伶俐夏旋采纳,获得10
2秒前
翟总完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
GBRUCE完成签到,获得积分10
4秒前
AoAoo发布了新的文献求助10
4秒前
4秒前
自由自在完成签到,获得积分10
5秒前
好人完成签到,获得积分10
5秒前
6秒前
小李发布了新的文献求助10
7秒前
欢喜的寒风完成签到,获得积分10
8秒前
zhou_zhuoli发布了新的文献求助10
8秒前
micaixing2006发布了新的文献求助10
8秒前
大宝藏发布了新的文献求助30
8秒前
杰456发布了新的文献求助10
9秒前
10秒前
13秒前
123完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
南巷的用户名完成签到,获得积分10
17秒前
八斗智狐完成签到,获得积分10
17秒前
学术浓痰发布了新的文献求助10
17秒前
lele完成签到 ,获得积分20
17秒前
仇书竹完成签到,获得积分10
17秒前
星辰大海应助给你一beizi3采纳,获得20
18秒前
18秒前
....完成签到,获得积分10
18秒前
19秒前
爱笑碧玉完成签到,获得积分10
20秒前
22秒前
执着的枫叶完成签到,获得积分10
22秒前
InfiniteLulu完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308512
求助须知:如何正确求助?哪些是违规求助? 4453661
关于积分的说明 13857726
捐赠科研通 4341377
什么是DOI,文献DOI怎么找? 2383861
邀请新用户注册赠送积分活动 1378491
关于科研通互助平台的介绍 1346482