Predicting Protein Function Using Multiple Kernels

计算机科学 分类器(UML) 核(代数) 多核学习 二元分类 人工智能 机器学习 模式识别(心理学) 核方法 算法 支持向量机 数学 组合数学
作者
Guoxian Yu,Huzefa Rangwala,Carlotta Domeniconi,Guoji Zhang,Zili Zhang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:12 (1): 219-233 被引量:33
标识
DOI:10.1109/tcbb.2014.2351821
摘要

High-throughput experimental techniques provide a wide variety of heterogeneous proteomic data sources. To exploit the information spread across multiple sources for protein function prediction, these data sources are transformed into kernels and then integrated into a composite kernel. Several methods first optimize the weights on these kernels to produce a composite kernel, and then train a classifier on the composite kernel. As such, these approaches result in an optimal composite kernel, but not necessarily in an optimal classifier. On the other hand, some approaches optimize the loss of binary classifiers and learn weights for the different kernels iteratively. For multi-class or multi-label data, these methods have to solve the problem of optimizing weights on these kernels for each of the labels, which are computationally expensive and ignore the correlation among labels. In this paper, we propose a method called Predicting Protein Function using Multiple Kernels (ProMK). ProMK iteratively optimizes the phases of learning optimal weights and reduces the empirical loss of multi-label classifier for each of the labels simultaneously. ProMK can integrate kernels selectively and downgrade the weights on noisy kernels. We investigate the performance of ProMK on several publicly available protein function prediction benchmarks and synthetic datasets. We show that the proposed approach performs better than previously proposed protein function prediction approaches that integrate multiple data sources and multi-label multiple kernel learning methods. The codes of our proposed method are available at https://sites.google.com/site/guoxian85/promk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
老夫子完成签到,获得积分10
1秒前
ywindm发布了新的文献求助30
2秒前
SciGPT应助Martina采纳,获得10
4秒前
4秒前
哩哩发布了新的文献求助10
5秒前
albertxin完成签到,获得积分10
5秒前
5秒前
海森堡发布了新的文献求助10
6秒前
小生不才完成签到 ,获得积分10
7秒前
Ledecky完成签到,获得积分10
7秒前
7秒前
123发布了新的文献求助10
9秒前
wangli发布了新的文献求助10
10秒前
11秒前
13秒前
不想长大完成签到,获得积分10
13秒前
天真秋寒发布了新的文献求助10
13秒前
大个应助鱼鱼子999采纳,获得10
13秒前
14秒前
14秒前
16秒前
Seven完成签到,获得积分10
17秒前
共享精神应助wxj采纳,获得10
17秒前
路过的发布了新的文献求助10
18秒前
123完成签到,获得积分10
18秒前
小蘑菇应助曾hf采纳,获得10
19秒前
19秒前
深情安青应助李小麻采纳,获得10
19秒前
20秒前
solar发布了新的文献求助10
20秒前
20秒前
迟大猫应助玩命的曼冬采纳,获得10
21秒前
隐形曼青应助哈哈哈采纳,获得10
21秒前
22秒前
23秒前
ju龙哥发布了新的文献求助10
23秒前
张冰倩完成签到 ,获得积分10
25秒前
王一发布了新的文献求助10
26秒前
徐老师发布了新的文献求助10
26秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3489857
求助须知:如何正确求助?哪些是违规求助? 3076978
关于积分的说明 9147123
捐赠科研通 2769152
什么是DOI,文献DOI怎么找? 1519630
邀请新用户注册赠送积分活动 704069
科研通“疑难数据库(出版商)”最低求助积分说明 702084