可控性
有界函数
数学
特征向量
代数数
背景(考古学)
空(SQL)
线性系统
口译(哲学)
应用数学
纯数学
离散数学
数学分析
计算机科学
量子力学
数据库
生物
物理
古生物学
程序设计语言
标识
DOI:10.1080/00207178408933158
摘要
In this paper we present an algebraic approach to the proof that a linear system with matrices (A, B) is null–controllable using bounded inputs if and only if it is null–controllable (with unbounded inputs) and all eigenvalues of A have non–positive real parts (continuous time) or magnitude not greater than one (discrete time). We also give the analogous results for the asymptotic case. Finally, we give an interpretation of these results in the context of local non–linear controllability.
科研通智能强力驱动
Strongly Powered by AbleSci AI