Estrogen-Regulated Genes Predict Survival in Hormone Receptor–Positive Breast Cancers

乳腺癌 雌激素受体 雌激素 医学 肿瘤科 内科学 比例危险模型 孕酮受体 生存分析 癌症 癌症研究
作者
Daniel Oh,Melissa A. Troester,Jerry Usary,Zhiyuan Hu,Xiaping He,Cheng Fan,Junyuan Wu,Lisa A. Carey,Charles M. Perou
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:24 (11): 1656-1664 被引量:352
标识
DOI:10.1200/jco.2005.03.2755
摘要

The prognosis of a patient with estrogen receptor (ER) and/or progesterone receptor (PR) -positive breast cancer can be highly variable. Therefore, we developed a gene expression-based outcome predictor for ER+ and/or PR+ (ie, luminal) breast cancer patients using biologic differences among these tumors.The ER+ MCF-7 breast cancer cell line was treated with 17beta-estradiol to identify estrogen-regulated genes. These genes were used to develop an outcome predictor on a training set of 65 luminal epithelial primary breast carcinomas. The outcome predictor was then validated on three independent published data sets. Results The estrogen-induced gene set identified in MCF-7 cells was used to hierarchically cluster a 65 tumor training set into two groups, which showed significant differences in survival (P = .0004). Supervised analyses identified 822 genes that optimally defined these two groups, with the poor-prognosis group IIE showing high expression of cell proliferation and antiapoptosis genes. The good prognosis group IE showed high expression of estrogen- and GATA3-regulated genes. Mean expression profiles (ie, centroids) created for each group were applied to ER+ and/or PR+ tumors from three published data sets. For all data sets, Kaplan-Meier survival analyses showed significant differences in relapse-free and overall survival between group IE and IIE tumors. Multivariate Cox analysis of the largest test data set showed that this predictor added significant prognostic information independent of standard clinical predictors and other gene expression-based predictors.This study provides new biologic information concerning differences within hormone receptor-positive breast cancers and a means of predicting long-term outcomes in tamoxifen-treated patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sterne完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
李健应助能干采纳,获得10
2秒前
慕青应助雪落初冬采纳,获得10
3秒前
酷炫城发布了新的文献求助10
3秒前
酒精过敏发布了新的文献求助10
3秒前
烟花应助刘小蕊采纳,获得10
3秒前
4秒前
5秒前
5秒前
5秒前
ssx完成签到,获得积分10
5秒前
星移完成签到,获得积分10
5秒前
6秒前
LYF发布了新的文献求助10
6秒前
7秒前
小马甲应助小巧雪糕采纳,获得10
7秒前
Freya完成签到,获得积分10
7秒前
YFH发布了新的文献求助10
8秒前
百里新梅完成签到,获得积分10
9秒前
YFH发布了新的文献求助10
9秒前
YFH发布了新的文献求助10
9秒前
酷炫城完成签到,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
Aicc发布了新的文献求助10
10秒前
魔幻的语堂完成签到,获得积分10
10秒前
认真的幻姬完成签到,获得积分10
10秒前
SciGPT应助仇湘采纳,获得10
10秒前
10秒前
11秒前
李保龙完成签到 ,获得积分10
11秒前
12秒前
半缘君发布了新的文献求助10
12秒前
小北完成签到,获得积分10
12秒前
勤恳的画笔完成签到,获得积分10
13秒前
Ava应助yhz123采纳,获得10
13秒前
小小发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4586991
求助须知:如何正确求助?哪些是违规求助? 4003089
关于积分的说明 12392186
捐赠科研通 3679467
什么是DOI,文献DOI怎么找? 2028111
邀请新用户注册赠送积分活动 1061598
科研通“疑难数据库(出版商)”最低求助积分说明 947851