Estrogen-Regulated Genes Predict Survival in Hormone Receptor–Positive Breast Cancers

乳腺癌 雌激素受体 雌激素 医学 肿瘤科 内科学 比例危险模型 孕酮受体 生存分析 癌症 癌症研究
作者
Daniel Oh,Melissa A. Troester,Jerry Usary,Zhiyuan Hu,Xiaping He,Cheng Fan,Junyuan Wu,Lisa A. Carey,Charles M. Perou
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:24 (11): 1656-1664 被引量:352
标识
DOI:10.1200/jco.2005.03.2755
摘要

The prognosis of a patient with estrogen receptor (ER) and/or progesterone receptor (PR) -positive breast cancer can be highly variable. Therefore, we developed a gene expression-based outcome predictor for ER+ and/or PR+ (ie, luminal) breast cancer patients using biologic differences among these tumors.The ER+ MCF-7 breast cancer cell line was treated with 17beta-estradiol to identify estrogen-regulated genes. These genes were used to develop an outcome predictor on a training set of 65 luminal epithelial primary breast carcinomas. The outcome predictor was then validated on three independent published data sets. Results The estrogen-induced gene set identified in MCF-7 cells was used to hierarchically cluster a 65 tumor training set into two groups, which showed significant differences in survival (P = .0004). Supervised analyses identified 822 genes that optimally defined these two groups, with the poor-prognosis group IIE showing high expression of cell proliferation and antiapoptosis genes. The good prognosis group IE showed high expression of estrogen- and GATA3-regulated genes. Mean expression profiles (ie, centroids) created for each group were applied to ER+ and/or PR+ tumors from three published data sets. For all data sets, Kaplan-Meier survival analyses showed significant differences in relapse-free and overall survival between group IE and IIE tumors. Multivariate Cox analysis of the largest test data set showed that this predictor added significant prognostic information independent of standard clinical predictors and other gene expression-based predictors.This study provides new biologic information concerning differences within hormone receptor-positive breast cancers and a means of predicting long-term outcomes in tamoxifen-treated patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助czj采纳,获得10
刚刚
科研顺利完成签到,获得积分10
刚刚
刚刚
单薄的诗柳完成签到,获得积分10
1秒前
GXLong完成签到,获得积分10
1秒前
Yu应助赫三问采纳,获得10
1秒前
karL完成签到,获得积分10
2秒前
2秒前
英姑应助冷静的天与采纳,获得10
2秒前
Yohi完成签到 ,获得积分10
3秒前
十一发布了新的文献求助10
3秒前
哒丝萌德发布了新的文献求助10
3秒前
水123发布了新的文献求助10
4秒前
4秒前
zmr123发布了新的文献求助10
4秒前
Jasper应助伶俐的采枫采纳,获得10
5秒前
5秒前
彭于晏应助TQY采纳,获得10
6秒前
wwl发布了新的文献求助10
6秒前
7秒前
lili完成签到 ,获得积分10
7秒前
Kyrie完成签到,获得积分10
7秒前
刑不上院士,礼不下博士完成签到,获得积分10
7秒前
冬雾完成签到 ,获得积分10
8秒前
老福贵儿发布了新的文献求助10
8秒前
1111完成签到,获得积分10
9秒前
领导范儿应助cz采纳,获得10
9秒前
9秒前
10秒前
6666应助予安采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
euphoria发布了新的文献求助20
11秒前
小二郎应助水123采纳,获得10
11秒前
12秒前
12秒前
duang发布了新的文献求助10
13秒前
14秒前
zhuo发布了新的文献求助10
14秒前
星辰大海应助tyj采纳,获得10
14秒前
星辰大海应助HY采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600432
求助须知:如何正确求助?哪些是违规求助? 4686051
关于积分的说明 14841577
捐赠科研通 4676571
什么是DOI,文献DOI怎么找? 2538725
邀请新用户注册赠送积分活动 1505789
关于科研通互助平台的介绍 1471195