Estrogen-Regulated Genes Predict Survival in Hormone Receptor–Positive Breast Cancers

乳腺癌 雌激素受体 雌激素 医学 肿瘤科 内科学 比例危险模型 孕酮受体 生存分析 癌症 癌症研究
作者
Daniel Oh,Melissa A. Troester,Jerry Usary,Zhiyuan Hu,Xiaping He,Cheng Fan,Junyuan Wu,Lisa A. Carey,Charles M. Perou
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:24 (11): 1656-1664 被引量:352
标识
DOI:10.1200/jco.2005.03.2755
摘要

The prognosis of a patient with estrogen receptor (ER) and/or progesterone receptor (PR) -positive breast cancer can be highly variable. Therefore, we developed a gene expression-based outcome predictor for ER+ and/or PR+ (ie, luminal) breast cancer patients using biologic differences among these tumors.The ER+ MCF-7 breast cancer cell line was treated with 17beta-estradiol to identify estrogen-regulated genes. These genes were used to develop an outcome predictor on a training set of 65 luminal epithelial primary breast carcinomas. The outcome predictor was then validated on three independent published data sets. Results The estrogen-induced gene set identified in MCF-7 cells was used to hierarchically cluster a 65 tumor training set into two groups, which showed significant differences in survival (P = .0004). Supervised analyses identified 822 genes that optimally defined these two groups, with the poor-prognosis group IIE showing high expression of cell proliferation and antiapoptosis genes. The good prognosis group IE showed high expression of estrogen- and GATA3-regulated genes. Mean expression profiles (ie, centroids) created for each group were applied to ER+ and/or PR+ tumors from three published data sets. For all data sets, Kaplan-Meier survival analyses showed significant differences in relapse-free and overall survival between group IE and IIE tumors. Multivariate Cox analysis of the largest test data set showed that this predictor added significant prognostic information independent of standard clinical predictors and other gene expression-based predictors.This study provides new biologic information concerning differences within hormone receptor-positive breast cancers and a means of predicting long-term outcomes in tamoxifen-treated patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
认真若云发布了新的文献求助10
1秒前
1秒前
sophieCCM0302发布了新的文献求助10
1秒前
2秒前
2秒前
7777777发布了新的文献求助10
3秒前
小泉发布了新的文献求助10
4秒前
YOOO发布了新的文献求助10
5秒前
眼睛大含双完成签到 ,获得积分10
6秒前
7秒前
chenjingjing发布了新的文献求助10
7秒前
9秒前
今年发论文完成签到,获得积分10
9秒前
9秒前
江夏完成签到 ,获得积分10
10秒前
枭声应助安静的月亮采纳,获得10
11秒前
13秒前
闾丘剑封发布了新的文献求助10
13秒前
YOOO完成签到,获得积分10
13秒前
14秒前
领导范儿应助7777777采纳,获得10
14秒前
16秒前
17秒前
17秒前
WCM完成签到,获得积分10
17秒前
chen完成签到,获得积分10
18秒前
一一完成签到 ,获得积分10
18秒前
oneday发布了新的文献求助50
18秒前
量子星尘发布了新的文献求助10
19秒前
明天见完成签到,获得积分10
20秒前
Ukey发布了新的文献求助10
22秒前
22秒前
北执完成签到,获得积分10
23秒前
23秒前
恐怖稽器人完成签到,获得积分10
23秒前
24秒前
24秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
彭于晏应助科研通管家采纳,获得10
25秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734932
求助须知:如何正确求助?哪些是违规求助? 5357333
关于积分的说明 15328116
捐赠科研通 4879418
什么是DOI,文献DOI怎么找? 2621901
邀请新用户注册赠送积分活动 1571096
关于科研通互助平台的介绍 1527906