神经科学
海马结构
海马体
长时程增强
背景(考古学)
突触可塑性
突触
生物
神经传递
生物化学
古生物学
受体
作者
Ximena Opitz-Araya,Andrés Barría
摘要
The hippocampus, a component of the limbic system, plays important roles in long-term memory and spatial navigation. Hippocampal neurons can modify the strength of their connections after brief periods of strong activation. This phenomenon, known as long-term potentiation (LTP) can last for hours or days and has become the best candidate mechanism for learning and memory. In addition, the well defined anatomy and connectivity of the hippocampus has made it a classical model system to study synaptic transmission and synaptic plasticity. As our understanding of the physiology of hippocampal synapses grew and molecular players became identified, a need to manipulate synaptic proteins became imperative. Organotypic hippocampal cultures offer the possibility for easy gene manipulation and precise pharmacological intervention but maintain synaptic organization that is critical to understanding synapse function in a more naturalistic context than routine culture dissociated neurons methods. Here we present a method to prepare and culture hippocampal slices that can be easily adapted to other brain regions. This method allows easy access to the slices for genetic manipulation using different approaches like viral infection or biolistics. In addition, slices can be easily recovered for biochemical assays, or transferred to microscopes for imaging or electrophysiological experiments.
科研通智能强力驱动
Strongly Powered by AbleSci AI