The heterojunction semiconductors Bi2O3/BaTiO3 were prepared by a milling-annealing method. The powders were characterized by X-ray diffraction (XRD), the Brunauer−Emmett−Teller (BET) method, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and UV−vis diffuse reflection spectroscopy (DRS). Their UV-induced photocatalytic activities were evaluated by the degradations of methyl orange and methylene blue. The results generally show that the heterojunction semiconductors Bi2O3/BaTiO3 exhibit better photocatalytic properties than the single-phase BaTiO3 or Bi2O3. The obviously increased performance of Bi2O3/BaTiO3 is ascribed mainly to the electric-field-driven electron−hole separations both at the interface and in the semiconductors. A strategy for the design of efficient heterojunction photocatalysts was proposed. That is, an electron-accepting semiconductor and a hole-accepting semiconductor with matching band potentials, which respectively possess high electron and hole conduction abilities, are tightly chemically bonded to construct the efficient heterojunction structure.