A Mach-Zehnder type electro-optic (EO) modulator based on novel organic-inorganic hybrid nonlinear optical materials attached with Disperse Red 19 has been successfully designed and fabricated. The new material system presents a smartly controlled process to overcome the EO effect stability tradeoff of conventional EO polymers and obtains poling efficiency and thermal stability. The characteristic parameters of both the embedded waveguide and the coplanar waveguide traveling-wave electrode are carefully designed and simulated by MATLAB program. The optimized structural properties and fabrication procedures are demonstrated. The electrical-optical overlap factor of fundamental mode is obtained as 85.62%. The device exhibits an EO coefficient of 12.8 pm/V at 1550 nm and stable operation, which shows potential for planar active light-wave circuit applications.