The study of an iterative method for the reconstruction of images corrupted by Poisson and Gaussian noise

反褶积 数学 迭代法 算法 泊松分布 边界(拓扑) 高斯分布 功能(生物学) 数学优化 迭代重建 应用数学 数学分析 计算机科学 计算机视觉 物理 进化生物学 生物 量子力学 统计
作者
Federico Benvenuto,Andrea Camera,C. Theys,A. Ferrari,H. Lantéri,M. Bertero
出处
期刊:Inverse Problems [IOP Publishing]
卷期号:24 (3): 035016-035016 被引量:76
标识
DOI:10.1088/0266-5611/24/3/035016
摘要

In 1993, Snyder et al investigated the maximum-likelihood (ML) approach to the deconvolution of images acquired by a charge-coupled-device camera and proved that the iterative method proposed by Llacer and Nuñez in 1990 can be derived from the expectation-maximization method of Dempster et al for the solution of ML problems. The utility of the approach was shown on the reconstruction of images of the Hubble space Telescope. This problem deserves further investigation because it can be important in the deconvolution of images of faint objects provided by next-generation ground-based telescopes that will be characterized by large collecting areas and advanced adaptive optics. In this paper, we first prove the existence of solutions of the ML problem by investigating the properties of the negative log of the likelihood function. Next, we show that the iterative method proposed by the above-mentioned authors is a scaled gradient method for the constrained minimization of this function in the closed and convex cone of the non-negative vectors and that, if it is convergent, the limit is a solution of the constrained ML problem. Moreover, by looking for the asymptotic behavior in the regime of high numbers of photons, we find an approximation that, as proved by numerical experiments, works well for any number of photons, thus providing an efficient implementation of the algorithm. In the case of image deconvolution, we also extend the method to take into account boundary effects and multiple images of the same object. The approximation proposed in this paper is tested on a few numerical examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哇哈哈哈哈哈完成签到 ,获得积分10
刚刚
1秒前
2秒前
2秒前
独行者完成签到,获得积分10
4秒前
刘家骏发布了新的文献求助10
5秒前
林一发布了新的文献求助20
6秒前
zxvcbnm完成签到,获得积分10
6秒前
晨星完成签到,获得积分10
7秒前
7秒前
顾越发布了新的文献求助10
7秒前
懵懂的尔风完成签到 ,获得积分10
9秒前
ding应助guard采纳,获得150
9秒前
10秒前
Joanne完成签到 ,获得积分10
11秒前
浮游应助瘦瘦的雨莲采纳,获得10
11秒前
12秒前
12秒前
蛙蛙完成签到 ,获得积分10
13秒前
luowenbo发布了新的文献求助10
15秒前
活力完成签到,获得积分10
16秒前
悦耳的谷芹完成签到 ,获得积分10
16秒前
17秒前
ilmiss完成签到,获得积分10
17秒前
llw发布了新的文献求助10
18秒前
YFL完成签到,获得积分10
18秒前
18秒前
kk_yang完成签到,获得积分10
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
20秒前
思源应助科研通管家采纳,获得10
20秒前
斯文败类应助科研通管家采纳,获得10
21秒前
wwz应助科研通管家采纳,获得10
21秒前
21秒前
Hello应助科研通管家采纳,获得10
21秒前
21秒前
我是老大应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
我是老大应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305794
求助须知:如何正确求助?哪些是违规求助? 4451756
关于积分的说明 13853101
捐赠科研通 4339264
什么是DOI,文献DOI怎么找? 2382461
邀请新用户注册赠送积分活动 1377460
关于科研通互助平台的介绍 1345074