The study of an iterative method for the reconstruction of images corrupted by Poisson and Gaussian noise

反褶积 数学 迭代法 算法 泊松分布 边界(拓扑) 高斯分布 功能(生物学) 数学优化 迭代重建 应用数学 数学分析 计算机科学 计算机视觉 物理 进化生物学 生物 量子力学 统计
作者
Federico Benvenuto,Andrea Camera,C. Theys,A. Ferrari,H. Lantéri,M. Bertero
出处
期刊:Inverse Problems [IOP Publishing]
卷期号:24 (3): 035016-035016 被引量:76
标识
DOI:10.1088/0266-5611/24/3/035016
摘要

In 1993, Snyder et al investigated the maximum-likelihood (ML) approach to the deconvolution of images acquired by a charge-coupled-device camera and proved that the iterative method proposed by Llacer and Nuñez in 1990 can be derived from the expectation-maximization method of Dempster et al for the solution of ML problems. The utility of the approach was shown on the reconstruction of images of the Hubble space Telescope. This problem deserves further investigation because it can be important in the deconvolution of images of faint objects provided by next-generation ground-based telescopes that will be characterized by large collecting areas and advanced adaptive optics. In this paper, we first prove the existence of solutions of the ML problem by investigating the properties of the negative log of the likelihood function. Next, we show that the iterative method proposed by the above-mentioned authors is a scaled gradient method for the constrained minimization of this function in the closed and convex cone of the non-negative vectors and that, if it is convergent, the limit is a solution of the constrained ML problem. Moreover, by looking for the asymptotic behavior in the regime of high numbers of photons, we find an approximation that, as proved by numerical experiments, works well for any number of photons, thus providing an efficient implementation of the algorithm. In the case of image deconvolution, we also extend the method to take into account boundary effects and multiple images of the same object. The approximation proposed in this paper is tested on a few numerical examples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
3秒前
4秒前
4秒前
5秒前
神秘猎牛人应助李博士采纳,获得10
5秒前
5秒前
史shi发布了新的文献求助10
5秒前
可不发布了新的文献求助10
6秒前
6秒前
bkagyin应助帅发采纳,获得10
6秒前
HJJHJH发布了新的文献求助10
6秒前
csj发布了新的文献求助10
6秒前
6秒前
整齐谷芹完成签到,获得积分10
7秒前
麻瓜发布了新的文献求助10
8秒前
8秒前
陈文文发布了新的文献求助10
9秒前
shouyi886完成签到,获得积分10
9秒前
10秒前
10秒前
zhx发布了新的文献求助10
10秒前
Mandy发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
Jasper应助ee采纳,获得10
12秒前
13秒前
史shi完成签到,获得积分10
13秒前
燕麦大王发布了新的文献求助10
14秒前
kiki发布了新的文献求助10
14秒前
食杂砸发布了新的文献求助10
15秒前
皮皮大王完成签到 ,获得积分10
16秒前
光亮鹤发布了新的文献求助10
16秒前
万能图书馆应助迫切采纳,获得10
17秒前
衣锦夜行完成签到,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642322
求助须知:如何正确求助?哪些是违规求助? 4758662
关于积分的说明 15017257
捐赠科研通 4800969
什么是DOI,文献DOI怎么找? 2566262
邀请新用户注册赠送积分活动 1524397
关于科研通互助平台的介绍 1483913