Rational integration of noisy evidence and prior semantic expectations in sentence interpretation

判决 计算机科学 句子处理 话语 理解力 自然语言处理 意义(存在) 推论 口译(哲学) 任务(项目管理) 人工智能 认知心理学 语言学 心理学 哲学 管理 经济 心理治疗师 程序设计语言
作者
Edward Gibson,Leon Bergen,Steven T. Piantadosi
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:110 (20): 8051-8056 被引量:347
标识
DOI:10.1073/pnas.1216438110
摘要

Sentence processing theories typically assume that the input to our language processing mechanisms is an error-free sequence of words. However, this assumption is an oversimplification because noise is present in typical language use (for instance, due to a noisy environment, producer errors, or perceiver errors). A complete theory of human sentence comprehension therefore needs to explain how humans understand language given imperfect input. Indeed, like many cognitive systems, language processing mechanisms may even be “well designed”–in this case for the task of recovering intended meaning from noisy utterances. In particular, comprehension mechanisms may be sensitive to the types of information that an idealized statistical comprehender would be sensitive to. Here, we evaluate four predictions about such a rational (Bayesian) noisy-channel language comprehender in a sentence comprehension task: ( i ) semantic cues should pull sentence interpretation towards plausible meanings, especially if the wording of the more plausible meaning is close to the observed utterance in terms of the number of edits; ( ii ) this process should asymmetrically treat insertions and deletions due to the Bayesian “size principle”; such nonliteral interpretation of sentences should ( iii ) increase with the perceived noise rate of the communicative situation and ( iv ) decrease if semantically anomalous meanings are more likely to be communicated. These predictions are borne out, strongly suggesting that human language relies on rational statistical inference over a noisy channel.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏实的道消完成签到 ,获得积分10
1秒前
在水一方应助DS采纳,获得10
1秒前
2秒前
luibia完成签到,获得积分20
2秒前
遗忘发布了新的文献求助50
2秒前
gg完成签到,获得积分20
2秒前
Winnie发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
LaTeXer应助yh采纳,获得50
4秒前
4秒前
5秒前
5秒前
xie完成签到,获得积分10
5秒前
5秒前
甜甜谷波完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
知意完成签到,获得积分10
7秒前
Yuanyuan发布了新的文献求助10
7秒前
8秒前
Lucia完成签到,获得积分20
8秒前
9秒前
9秒前
daomaihu发布了新的文献求助30
9秒前
卜谷雪发布了新的文献求助10
9秒前
10秒前
10秒前
慕青应助澹台无采纳,获得10
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
Nicole发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730272
求助须知:如何正确求助?哪些是违规求助? 5322398
关于积分的说明 15318370
捐赠科研通 4876855
什么是DOI,文献DOI怎么找? 2619709
邀请新用户注册赠送积分活动 1569121
关于科研通互助平台的介绍 1525755