Preoperative prediction of hepatocellular carcinoma tumour grade and micro-vascular invasion by means of artificial neural network: A pilot study

肝细胞癌 逻辑回归 接收机工作特性 医学 内科学 血管侵犯 胃肠病学 人工神经网络 机器学习 计算机科学
作者
Alessandro Cucchetti,Fabio Piscaglia,Antonietta D’Errico,Matteo Ravaioli,Matteo Cescon,Matteo Zanello,Gian Luca Grazi,Rita Golfieri,Walter Franco Grigioni,Antonio Colecchia
出处
期刊:Journal of Hepatology [Elsevier BV]
卷期号:52 (6): 880-888 被引量:166
标识
DOI:10.1016/j.jhep.2009.12.037
摘要

Hepatocellular carcinoma (HCC) prognosis strongly depends upon nuclear grade and the presence of microscopic vascular invasion (MVI). The aim of this study was to develop an artificial neural network (ANN) that is able to predict tumour grade and MVI on the basis of non-invasive variables.Clinical, radiological, and histological data from 250 cirrhotic patients resected (n=200) or transplanted (n=50) for HCC were analyzed. ANN and logistic regression models were built on a training group of 175 randomly chosen patients and tested on the remaining testing group of 75. Receiver operating characteristics curve (ROC) and k-statistics were used to analyze model accuracy in the prediction of the final histological assessment of tumour grade (G1-G2 vs. G3-G4) and MVI (absent vs. present).Pathologic examination showed G3-G4 in 69.6% of cases and MVI in 74.4%. Preoperative serum alpha-fetoprotein (AFP), tumour number, size, and volume were related to tumour grade and MVI (p<0.05) and were used for ANN building, whereas, tumour number did not enter into the logistic models. In the training group, ANN area under ROC curves (AUC) for tumour grade and MVI prediction were 0.94 and 0.92, both higher (p<0.001) than those of logistic models (0.85 for both). In the testing group, ANN correctly identified 93.3% of tumour grades (k=0.81) and 91% of MVI (k=0.73). Logistic models correctly identified 81% of tumour grades (k=0.55) and 85% of MVI (k=0.57).ANN identifies HCC tumour grades and MVI on the basis of preoperative variables more accurately than the conventional linear model and should be used for tailoring clinical management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
艺术家脾气完成签到,获得积分10
刚刚
1秒前
CipherSage应助zx采纳,获得10
1秒前
1秒前
1秒前
领导范儿应助开心友儿采纳,获得10
1秒前
丘比特应助妙脆角采纳,获得10
1秒前
共享精神应助七二采纳,获得10
2秒前
2秒前
紫心发布了新的文献求助10
2秒前
泰坡西完成签到 ,获得积分10
2秒前
3秒前
充电宝应助小洋人采纳,获得10
3秒前
WYF发布了新的文献求助20
4秒前
5秒前
5秒前
wanci应助smile采纳,获得30
5秒前
奶昔源完成签到,获得积分10
6秒前
haohaha发布了新的文献求助10
6秒前
rong完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
浅暖发布了新的文献求助10
8秒前
8秒前
天天快乐应助李颜龙采纳,获得10
8秒前
youngga07发布了新的文献求助10
8秒前
9秒前
柯一一应助王雯雯采纳,获得10
9秒前
9秒前
谨慎枫叶完成签到,获得积分20
9秒前
赘婿应助RIchard采纳,获得10
10秒前
11秒前
orixero应助奋斗的绿海采纳,获得10
11秒前
活力契发布了新的文献求助10
12秒前
迷路枫完成签到,获得积分10
12秒前
twelveleven发布了新的文献求助10
12秒前
隐形曼青应助马里奥采纳,获得10
12秒前
ttkx完成签到,获得积分10
12秒前
LEMONS应助爱笑的稀采纳,获得10
14秒前
开心友儿发布了新的文献求助10
14秒前
行走的鱼发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959564
求助须知:如何正确求助?哪些是违规求助? 3505819
关于积分的说明 11126349
捐赠科研通 3237712
什么是DOI,文献DOI怎么找? 1789318
邀请新用户注册赠送积分活动 871669
科研通“疑难数据库(出版商)”最低求助积分说明 802951