Preoperative prediction of hepatocellular carcinoma tumour grade and micro-vascular invasion by means of artificial neural network: A pilot study

肝细胞癌 逻辑回归 接收机工作特性 医学 内科学 血管侵犯 胃肠病学 人工神经网络 机器学习 计算机科学
作者
Alessandro Cucchetti,Fabio Piscaglia,Antonietta D’Errico,Matteo Ravaioli,Matteo Cescon,Matteo Zanello,Gian Luca Grazi,Rita Golfieri,Walter Franco Grigioni,Antonio Colecchia
出处
期刊:Journal of Hepatology [Elsevier]
卷期号:52 (6): 880-888 被引量:166
标识
DOI:10.1016/j.jhep.2009.12.037
摘要

Hepatocellular carcinoma (HCC) prognosis strongly depends upon nuclear grade and the presence of microscopic vascular invasion (MVI). The aim of this study was to develop an artificial neural network (ANN) that is able to predict tumour grade and MVI on the basis of non-invasive variables.Clinical, radiological, and histological data from 250 cirrhotic patients resected (n=200) or transplanted (n=50) for HCC were analyzed. ANN and logistic regression models were built on a training group of 175 randomly chosen patients and tested on the remaining testing group of 75. Receiver operating characteristics curve (ROC) and k-statistics were used to analyze model accuracy in the prediction of the final histological assessment of tumour grade (G1-G2 vs. G3-G4) and MVI (absent vs. present).Pathologic examination showed G3-G4 in 69.6% of cases and MVI in 74.4%. Preoperative serum alpha-fetoprotein (AFP), tumour number, size, and volume were related to tumour grade and MVI (p<0.05) and were used for ANN building, whereas, tumour number did not enter into the logistic models. In the training group, ANN area under ROC curves (AUC) for tumour grade and MVI prediction were 0.94 and 0.92, both higher (p<0.001) than those of logistic models (0.85 for both). In the testing group, ANN correctly identified 93.3% of tumour grades (k=0.81) and 91% of MVI (k=0.73). Logistic models correctly identified 81% of tumour grades (k=0.55) and 85% of MVI (k=0.57).ANN identifies HCC tumour grades and MVI on the basis of preoperative variables more accurately than the conventional linear model and should be used for tailoring clinical management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助节节高采纳,获得10
刚刚
刚刚
1秒前
2秒前
3秒前
3秒前
4秒前
4秒前
wy完成签到,获得积分10
5秒前
漂亮幻莲发布了新的文献求助10
5秒前
6秒前
6秒前
Orange应助hhan采纳,获得10
6秒前
彭于晏应助尊敬的非笑采纳,获得10
7秒前
7秒前
8秒前
彭于晏应助zyp采纳,获得10
9秒前
李姓人完成签到,获得积分10
10秒前
10秒前
节节高完成签到,获得积分20
10秒前
makabaka发布了新的文献求助10
10秒前
bastien发布了新的文献求助10
12秒前
12秒前
Ganlou应助jewel采纳,获得10
12秒前
GuSiwen完成签到,获得积分10
13秒前
cuber完成签到 ,获得积分10
13秒前
dyfsj发布了新的文献求助10
14秒前
节节高发布了新的文献求助10
15秒前
iris发布了新的文献求助10
16秒前
zhang完成签到,获得积分20
16秒前
天道酬勤完成签到,获得积分10
17秒前
自然完成签到,获得积分10
17秒前
juziyaya应助少喝奶茶采纳,获得10
18秒前
宫冷雁发布了新的文献求助20
20秒前
21秒前
22秒前
22秒前
仇文琪完成签到,获得积分10
22秒前
LY完成签到,获得积分10
22秒前
Summer完成签到,获得积分10
23秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262508
求助须知:如何正确求助?哪些是违规求助? 2903167
关于积分的说明 8324251
捐赠科研通 2573213
什么是DOI,文献DOI怎么找? 1398106
科研通“疑难数据库(出版商)”最低求助积分说明 654018
邀请新用户注册赠送积分活动 632623