清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Preoperative prediction of hepatocellular carcinoma tumour grade and micro-vascular invasion by means of artificial neural network: A pilot study

肝细胞癌 逻辑回归 接收机工作特性 医学 内科学 血管侵犯 胃肠病学 人工神经网络 机器学习 计算机科学
作者
Alessandro Cucchetti,Fabio Piscaglia,Antonietta D’Errico,Matteo Ravaioli,Matteo Cescon,Matteo Zanello,Gian Luca Grazi,Rita Golfieri,Walter Franco Grigioni,Antonio Colecchia
出处
期刊:Journal of Hepatology [Elsevier]
卷期号:52 (6): 880-888 被引量:166
标识
DOI:10.1016/j.jhep.2009.12.037
摘要

Hepatocellular carcinoma (HCC) prognosis strongly depends upon nuclear grade and the presence of microscopic vascular invasion (MVI). The aim of this study was to develop an artificial neural network (ANN) that is able to predict tumour grade and MVI on the basis of non-invasive variables.Clinical, radiological, and histological data from 250 cirrhotic patients resected (n=200) or transplanted (n=50) for HCC were analyzed. ANN and logistic regression models were built on a training group of 175 randomly chosen patients and tested on the remaining testing group of 75. Receiver operating characteristics curve (ROC) and k-statistics were used to analyze model accuracy in the prediction of the final histological assessment of tumour grade (G1-G2 vs. G3-G4) and MVI (absent vs. present).Pathologic examination showed G3-G4 in 69.6% of cases and MVI in 74.4%. Preoperative serum alpha-fetoprotein (AFP), tumour number, size, and volume were related to tumour grade and MVI (p<0.05) and were used for ANN building, whereas, tumour number did not enter into the logistic models. In the training group, ANN area under ROC curves (AUC) for tumour grade and MVI prediction were 0.94 and 0.92, both higher (p<0.001) than those of logistic models (0.85 for both). In the testing group, ANN correctly identified 93.3% of tumour grades (k=0.81) and 91% of MVI (k=0.73). Logistic models correctly identified 81% of tumour grades (k=0.55) and 85% of MVI (k=0.57).ANN identifies HCC tumour grades and MVI on the basis of preoperative variables more accurately than the conventional linear model and should be used for tailoring clinical management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼亦绿完成签到,获得积分10
2秒前
kiterunner完成签到,获得积分10
33秒前
gexzygg应助科研通管家采纳,获得10
36秒前
陈尹蓝完成签到 ,获得积分10
41秒前
DocM完成签到 ,获得积分10
2分钟前
woxinyouyou完成签到,获得积分0
2分钟前
月军完成签到,获得积分10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
2分钟前
qtmxxx发布了新的文献求助10
3分钟前
SciGPT应助美味SCI歌单采纳,获得100
3分钟前
qtmxxx完成签到,获得积分10
3分钟前
华仔应助干净怀寒采纳,获得10
3分钟前
3分钟前
美味SCI歌单完成签到,获得积分10
3分钟前
美味SCI歌单发布了新的文献求助100
3分钟前
池雨完成签到 ,获得积分10
3分钟前
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
干净怀寒发布了新的文献求助10
6分钟前
干净怀寒完成签到,获得积分10
6分钟前
zsmj23完成签到 ,获得积分0
6分钟前
sunialnd完成签到,获得积分10
6分钟前
6分钟前
6分钟前
krajicek发布了新的文献求助10
6分钟前
方白秋完成签到,获得积分0
7分钟前
魔幻的妖丽完成签到 ,获得积分0
7分钟前
热情的橙汁完成签到,获得积分10
8分钟前
qiongqiong完成签到 ,获得积分10
8分钟前
我是老大应助科研通管家采纳,获得10
8分钟前
kmzzy完成签到,获得积分10
8分钟前
daguan完成签到,获得积分10
9分钟前
荣幸完成签到 ,获得积分10
9分钟前
自由橘子完成签到 ,获得积分10
10分钟前
大医仁心完成签到 ,获得积分10
10分钟前
科研通AI6应助Kate采纳,获得10
11分钟前
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565106
求助须知:如何正确求助?哪些是违规求助? 4649891
关于积分的说明 14689325
捐赠科研通 4591782
什么是DOI,文献DOI怎么找? 2519370
邀请新用户注册赠送积分活动 1491920
关于科研通互助平台的介绍 1463084