电子工程
计算机科学
组分(热力学)
拓扑(电路)
独立成分分析
谐波
信号(编程语言)
谐波分析
鉴定(生物学)
电压
传动系统
传输(电信)
成分分析
控制理论(社会学)
谐波
电力系统
功率(物理)
工程类
主成分分析
电气工程
声学
物理
人工智能
植物
量子力学
生物
热力学
程序设计语言
出处
期刊:Power and Energy Society General Meeting
日期:2009-07-01
被引量:3
标识
DOI:10.1109/pes.2009.5275509
摘要
Because of an increase of installation of power electronic equipment and other harmonic sources, the identification and estimation of harmonic loads is of concern in electric power transmission and distribution systems. Conventional harmonic state estimation requires a redundant number of expensive harmonic measurements. In this paper we explore the use of a statistical signal processing technique, known as Independent Component Analysis for harmonic source identification and estimation. If the harmonic currents are statistically independent, ICA is able to estimate the currents using a limited number of harmonic voltage measurements and without any knowledge of the system admittances or topology. Results are presented for the modified IEEE 30 bus system.
科研通智能强力驱动
Strongly Powered by AbleSci AI