Synaptic plasticity in pathological pain

神经科学 突触可塑性 变质塑性 神经传递 谷氨酸的 非突触性可塑性 兴奋性突触后电位 抑制性突触后电位 突触标度 突触疲劳 稳态可塑性 生物 谷氨酸受体 生物化学 受体
作者
Ceng Luo,Thomas Kuner,Rohini Kuner
出处
期刊:Trends in Neurosciences [Elsevier BV]
卷期号:37 (6): 343-355 被引量:219
标识
DOI:10.1016/j.tins.2014.04.002
摘要

•Synapses in nociceptive pathways adapt strength in an activity-dependent manner. •Synaptic plasticity in nociceptive pathways is both functional and structural. •We review the molecular mechanisms of synaptic plasticity in nociceptive pathways. •Both pre- and post-synaptic mechanisms are involved in spinal synaptic plasticity. Chronic pain represents a major challenge to clinical practice and basic science. Excitatory neurotransmission in somatosensory nociceptive pathways is predominantly mediated by glutamatergic synapses. A key feature of these synapses is their ability to adapt synaptic strength in an activity-dependent manner. Such disease-induced synaptic plasticity is paramount to alterations in synaptic function and structure. Recent work has recognized that synaptic plasticity at both excitatory and inhibitory synapses can function as a prime mechanism underlying pathological pain. In this review, cellular and molecular mechanisms underlying synaptic plasticity in nociceptive pathways will be reviewed and discussed. New insights derived from these advances are expected to expedite development of novel interventional approaches for treatment of pathological pain. Chronic pain represents a major challenge to clinical practice and basic science. Excitatory neurotransmission in somatosensory nociceptive pathways is predominantly mediated by glutamatergic synapses. A key feature of these synapses is their ability to adapt synaptic strength in an activity-dependent manner. Such disease-induced synaptic plasticity is paramount to alterations in synaptic function and structure. Recent work has recognized that synaptic plasticity at both excitatory and inhibitory synapses can function as a prime mechanism underlying pathological pain. In this review, cellular and molecular mechanisms underlying synaptic plasticity in nociceptive pathways will be reviewed and discussed. New insights derived from these advances are expected to expedite development of novel interventional approaches for treatment of pathological pain. LTP occurs in two phases. Early-phase LTP is independent on de novo protein synthesis and lasts for up to 2–3 hours. Late-phase LTP involves protein synthesis and lasts longer than 3 hours, up to the life span of an animal and may be accompanied by structural changes at synapses. a long-lasting decrease of the response of a postsynaptic nerve cell to stimulation across the synapse that occurs with repeated stimulation, which lasts for an extended period of time (tens of minutes to hours in vitro and hours to days and months or even years in vivo). LTD is a form of long-term synaptic plasticity. a long-lasting strengthening of the response of a postsynaptic nerve cell to stimulation across the synapse that occurs with repeated stimulation, which lasts for an extended period of time (tens of minutes to hours in vitro and hours to days and months or even years in vivo). LTP is a form of long-term synaptic plasticity. long-lasting changes in the efficacy of synaptic connections, which lasts over tens of minutes (e.g., >30 min), hours, months or even years. a phenomenon in which postsynaptic potentials or currents (PSPs, PSCs) evoked by an impulse are decreased when that impulse closely follows a prior impulse. PPD is a form of short-term synaptic plasticity. a phenomenon in which postsynaptic potentials or currents (PSPs, PSCs) evoked by an impulse are increased when that impulse closely follows a prior impulse. PPF is a form of short-term synaptic plasticity. a short-term decrease in synaptic strength under repetitive stimuli within a timescale of milliseconds to seconds. a short-term increase in synaptic strength under repetitive stimuli within a time scale of milliseconds to seconds. a phenomenon in which synaptic efficacy changes over milliseconds to minutes in a way that reflects the history of presynaptic activity. synaptic contacts between two neurons where a presynaptic action potential fails to evoke a detectable postsynaptic signal. A synapse can be presynaptically silent or postsynaptically silent. a conversion of silent synapses to functional synapses. a progessive increase in the magnitude of C-fiber-evoked responses of spinal dorsal horn neurons produced by low-frequency, repetitive stimulation of C fibers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
英俊的铭应助执源星采纳,获得10
2秒前
cheng完成签到,获得积分10
3秒前
3秒前
4秒前
6秒前
李健应助高高小兔子采纳,获得10
6秒前
Jasper应助彩色的惊蛰采纳,获得10
8秒前
xx完成签到,获得积分10
9秒前
xx发布了新的文献求助10
9秒前
11发布了新的文献求助30
12秒前
蒸馏水完成签到 ,获得积分10
15秒前
15秒前
16秒前
科研通AI5应助xx采纳,获得30
17秒前
zf完成签到,获得积分10
18秒前
朝花夕拾完成签到,获得积分10
20秒前
生活的狗完成签到,获得积分10
20秒前
Aquarius完成签到,获得积分10
20秒前
21秒前
英俊一刀发布了新的文献求助10
21秒前
科研通AI5应助wlkq采纳,获得10
21秒前
勤奋的冰淇淋完成签到 ,获得积分10
22秒前
通通通完成签到,获得积分10
22秒前
CipherSage应助凯蒂采纳,获得10
22秒前
郭郭完成签到,获得积分10
22秒前
牛太虚完成签到,获得积分10
23秒前
姜信杰完成签到,获得积分10
24秒前
Legend_发布了新的文献求助10
24秒前
Acid黄完成签到,获得积分10
24秒前
24秒前
25秒前
SONG发布了新的文献求助10
26秒前
万佳怡完成签到 ,获得积分10
26秒前
26秒前
sai完成签到 ,获得积分10
29秒前
30秒前
33发布了新的文献求助10
30秒前
32秒前
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672729
求助须知:如何正确求助?哪些是违规求助? 3228865
关于积分的说明 9782382
捐赠科研通 2939285
什么是DOI,文献DOI怎么找? 1610797
邀请新用户注册赠送积分活动 760740
科研通“疑难数据库(出版商)”最低求助积分说明 736199