Robust Visual Servoing

视觉伺服 人工智能 计算机视觉 计算机科学 机器人 稳健性(进化) 初始化 抓住 姿势 服务机器人 对象(语法) 过程(计算) 方向(向量空间) 数学 生物化学 化学 几何学 基因 程序设计语言 操作系统
作者
Danica Kragić,Henrik I. Christensen
出处
期刊:The International Journal of Robotics Research [SAGE]
卷期号:22 (10-11): 923-939 被引量:57
标识
DOI:10.1177/027836490302210009
摘要

For service robots operating in domestic environments, it is not enough to consider only control level robustness; it is equally important to consider how image information that serves as input to the control process can be used so as to achieve robust and efficient control. In this paper we present an effort towards the development of robust visual techniques used to guide robots in various tasks. Given a task at hand, we argue that different levels of complexity should be considered; this also defines the choice of the visual technique used to provide the necessary feedback information. We concentrate on visual feedback estimation where we investigate both two- and three-dimensional techniques. In the former case, we are interested in providing coarse information about the object position/velocity in the image plane. In particular, a set of simple visual features (cues) is employed in an integrated framework where voting is used for fusing the responses from individual cues. The experimental evaluation shows the system performance for three different cases of camera-robot configurations most common for robotic systems. For cases where the robot is supposed to grasp the object, a two- dimensional position estimate is often not enough. Complete pose (position and orientation) of the object may be required. Therefore, we present a model-based system where a wire-frame model of the object is used to estimate its pose. Since a number of similar systems have been proposed in the literature, we concentrate on the particular part of the system usually neglected—automatic pose initialization. Finally, we show how a number of existing approaches can successfully be integrated in a system that is able to recognize and grasp fairly textured, everyday objects. One of the examples presented in the experimental section shows a mobile robot performing tasks in a real-word environment—a living room.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momo发布了新的文献求助10
刚刚
刚刚
欢呼的灰狼完成签到,获得积分10
刚刚
1秒前
尔多龙发布了新的文献求助10
1秒前
高欢发布了新的文献求助10
1秒前
1秒前
1秒前
香蕉觅云应助乃惜采纳,获得10
1秒前
minmi完成签到,获得积分10
2秒前
fantastic完成签到,获得积分10
2秒前
今后应助卖艺的读书人采纳,获得10
2秒前
着急的青枫应助juzi_yugan采纳,获得10
2秒前
机灵的大地完成签到,获得积分10
3秒前
完美无声完成签到,获得积分20
4秒前
4秒前
minkeyoo完成签到,获得积分10
5秒前
June发布了新的文献求助10
5秒前
乐乐应助现代绮玉采纳,获得10
5秒前
Fang发布了新的文献求助10
5秒前
5秒前
玄一发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
老福贵儿应助mhpvv采纳,获得10
6秒前
7秒前
牛帮帮完成签到,获得积分20
8秒前
xinghui完成签到,获得积分10
8秒前
hohokuz发布了新的文献求助10
10秒前
10秒前
Akim应助hbpu230701采纳,获得10
10秒前
玄一完成签到,获得积分10
12秒前
孙扬发布了新的文献求助30
12秒前
开朗的觅海完成签到,获得积分10
12秒前
研友_VZG7GZ应助momo采纳,获得10
13秒前
EN发布了新的文献求助10
13秒前
Hello应助牛帮帮采纳,获得10
13秒前
13秒前
Hang完成签到,获得积分20
13秒前
赘婿应助tanghong采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594565
求助须知:如何正确求助?哪些是违规求助? 4680238
关于积分的说明 14813737
捐赠科研通 4647610
什么是DOI,文献DOI怎么找? 2535063
邀请新用户注册赠送积分活动 1503074
关于科研通互助平台的介绍 1469521