化学
结(造纸)
醛
胺气处理
氢键
氯化物
组合化学
分子
晶体结构
拓扑(电路)
立体化学
结晶学
有机化学
催化作用
化学工程
组合数学
工程类
数学
作者
Jean‐François Ayme,Jonathon E. Beves,David A. Leigh,Roy T. McBurney,Kari Rissanen,David Schultz
出处
期刊:Nature Chemistry
[Nature Portfolio]
日期:2011-11-04
卷期号:4 (1): 15-20
被引量:399
摘要
Knots are being discovered with increasing frequency in both biological and synthetic macromolecules and have been fundamental topological targets for chemical synthesis for the past two decades. Here, we report on the synthesis of the most complex non-DNA molecular knot prepared to date: the self-assembly of five bis-aldehyde and five bis-amine building blocks about five metal cations and one chloride anion to form a 160-atom-loop molecular pentafoil knot (five crossing points). The structure and topology of the knot is established by NMR spectroscopy, mass spectrometry and X-ray crystallography, revealing a symmetrical closed-loop double helicate with the chloride anion held at the centre of the pentafoil knot by ten CH···Cl(-) hydrogen bonds. The one-pot self-assembly reaction features an exceptional number of different design elements-some well precedented and others less well known within the context of directing the formation of (supra)molecular species. We anticipate that the strategies and tactics used here can be applied to the rational synthesis of other higher-order interlocked molecular architectures.
科研通智能强力驱动
Strongly Powered by AbleSci AI