Analysis of Grassland Vegetation of the Southwest Heilongjiang Steppe (China) Using the Power Law

样方 草原 草原 放牧 横断面 地理 牲畜 植被(病理学) 草地退化 植物群落 空间异质性 生态学 物种多样性 林业 农林复合经营 环境科学 生物 物种丰富度 医学 病理
作者
Mikinori Tsuiki,Yusheng Wang,Yiruhan,Michio Tsutsumi,Masae Shiyomi
出处
期刊:Journal of Integrative Plant Biology [Wiley]
卷期号:47 (8): 917-926 被引量:17
标识
DOI:10.1111/j.1744-7909.2005.00121.x
摘要

Abstract: In 1997, we conducted a vegetation survey in three semi-arid natural grasslands (steppes) with different livestock grazing intensities in Southwest Heilongjiang Province, China. The dominant grassland species was the grass Stipa baicalensis Roshev. Grasslands with light, intermediate, and heavy grazing intensities were located 10, 5, and 2 km from a village, respectively. Villagers use the steppe to raise cattle, horses, sheep, and goats. Each of the three grasslands was surveyed by placing 100 quadrats (50 cm×50 cm) along a 50 m line transect. Each quadrat was divided into four equal areas (25 cm×25 cm; S-quadrats) and all plant species occurring in each of these smaller areas were identified and recorded. These data were summarized into frequency distributions and the percentage of S-quadrats containing a given species and the variance of each species were estimated. The power law was applied to these estimates. The power law was used to evaluate the spatial heterogeneity and frequency of occurrence for each species in the grassland community. The lightly grazed grassland exhibited high spatial heterogeneity (caused by large plant size), the highest species diversity, and a high occurrence of S. baicalensis. In contrast, the heavily grazed grassland exhibited high spatial heterogeneity (caused by patchy populations of small plant size), low species diversity, and a low occurrence of S. baicalensis. We judged that the heavily grazed grassland was overgrazed and exclusion of livestock from the degraded areas is necessary for recovery. (Managing editor: Ya-Qin HAN)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩金龙发布了新的文献求助10
1秒前
1秒前
小飞七应助红毛兔采纳,获得10
1秒前
小仙虎殿下完成签到 ,获得积分10
1秒前
Ethan完成签到,获得积分10
2秒前
2秒前
3秒前
感谢抹茶芋泥小圆子转发科研通微信,获得积分50
3秒前
子春完成签到 ,获得积分10
3秒前
平常的纸飞机完成签到,获得积分10
3秒前
soso完成签到 ,获得积分10
5秒前
5秒前
狗狗应助跳跃乘风采纳,获得20
6秒前
小油条应助Amai采纳,获得20
6秒前
科研通AI5应助clear采纳,获得10
6秒前
韩金龙完成签到,获得积分10
7秒前
科研通AI2S应助LiShin采纳,获得10
7秒前
希望天下0贩的0应助尘雾采纳,获得10
9秒前
9秒前
12345完成签到,获得积分10
10秒前
Lialilico完成签到,获得积分10
11秒前
Akim应助我必做出来采纳,获得50
11秒前
12秒前
随机起的名完成签到,获得积分10
12秒前
Owen应助努力的小狗屁采纳,获得10
13秒前
13秒前
vuig完成签到 ,获得积分10
13秒前
哈哈哈的一笑完成签到,获得积分10
13秒前
13秒前
Emma完成签到,获得积分10
13秒前
14秒前
14秒前
研友_VZG7GZ应助不吃香菜采纳,获得10
14秒前
huanger完成签到,获得积分10
14秒前
Tayzon完成签到 ,获得积分10
14秒前
我测你码完成签到,获得积分10
14秒前
超级宇宙二踢脚完成签到,获得积分10
15秒前
15秒前
16秒前
大气小新完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794