Imputing response rates from means and standard deviations in meta-analyses

荟萃分析 统计 组内相关 插补(统计学) 置信区间 缺少数据 结果(博弈论) 随机对照试验 计量经济学 心理学 医学 数学 心理测量学 内科学 数理经济学
作者
Toshi A. Furukawa,Andrea Cipriani,Corrado Barbui,Paolo Brambilla,Norio Watanabe
出处
期刊:International Clinical Psychopharmacology [Ovid Technologies (Wolters Kluwer)]
卷期号:20 (1): 49-52 被引量:306
标识
DOI:10.1097/00004850-200501000-00010
摘要

The principle of intention-to-treat analysis must be strictly applied to both individual randomized controlled trial and meta-analysis but, in doing so, would involve imputation of some missing data. There is little literature on how to perform this in the case of meta-analysis. For dichotomous outcome measures, one possible strategy is to carry out a sensitivity analysis based on the so-called best case/worst case analyses. For continuous outcomes, it may be possible to achieve this if we can dichotomise the continuous outcomes. Here, we empirically examined the appropriateness of converting continuous outcomes (expressed as mean+/-SD) into dichotomous outcomes (expressed as response rates) in four completed meta-analyses of depression and anxiety, assuming normal distribution of the continuous outcome measures. The agreement between the actually observed versus the imputed raw numbers of responders was indicated by an intraclass correlation coefficient of 0.97 (95% confidence interval 0.95-0.98). The pooled relative risks of the four meta-analyses based on the imputed values were virtually identical to those based on the actually observed values. When individual trials report the means+/-SDs of their outcome measures but fail to report response rates, it may therefore be possible to impute the response rates based on the means+/-SDs, and then submit the meta-analysis to worst case/best case analyses. This would allow a more robust and clinically interpretable estimation of the true, underlying treatment effect to be made.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研狗发布了新的文献求助10
1秒前
vc完成签到,获得积分20
1秒前
hyx7735发布了新的文献求助10
1秒前
Jasper应助lv采纳,获得10
3秒前
Jasper应助十次方采纳,获得10
3秒前
vc发布了新的文献求助10
3秒前
3秒前
AneyWinter66应助miqilin采纳,获得10
3秒前
4秒前
阔达板栗关注了科研通微信公众号
4秒前
zcz发布了新的文献求助30
4秒前
跳跃可仁完成签到,获得积分10
4秒前
5秒前
mumu完成签到,获得积分10
5秒前
6秒前
YY发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
丘比特应助明理的帆布鞋采纳,获得10
7秒前
我是老大应助俊逸的翅膀采纳,获得10
7秒前
8秒前
万能图书馆应助科研狗采纳,获得10
8秒前
yznfly应助欢喜夏之采纳,获得50
8秒前
8秒前
8秒前
wwwwww完成签到,获得积分10
8秒前
可靠幼旋发布了新的文献求助10
8秒前
8秒前
hahaagain完成签到,获得积分10
8秒前
丘比特应助傅取采纳,获得10
8秒前
9秒前
哈哈哈完成签到 ,获得积分10
9秒前
VVzza完成签到,获得积分20
10秒前
usu发布了新的文献求助10
10秒前
hyx7735完成签到,获得积分10
10秒前
努力挪砖完成签到,获得积分10
10秒前
Jasper应助alex采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612993
求助须知:如何正确求助?哪些是违规求助? 4698217
关于积分的说明 14896593
捐赠科研通 4734695
什么是DOI,文献DOI怎么找? 2546766
邀请新用户注册赠送积分活动 1510830
关于科研通互助平台的介绍 1473494