Imputing response rates from means and standard deviations in meta-analyses

荟萃分析 统计 组内相关 插补(统计学) 置信区间 缺少数据 结果(博弈论) 随机对照试验 计量经济学 心理学 医学 数学 心理测量学 内科学 数理经济学
作者
Toshi A. Furukawa,Andrea Cipriani,Corrado Barbui,Paolo Brambilla,Norio Watanabe
出处
期刊:International Clinical Psychopharmacology [Ovid Technologies (Wolters Kluwer)]
卷期号:20 (1): 49-52 被引量:306
标识
DOI:10.1097/00004850-200501000-00010
摘要

The principle of intention-to-treat analysis must be strictly applied to both individual randomized controlled trial and meta-analysis but, in doing so, would involve imputation of some missing data. There is little literature on how to perform this in the case of meta-analysis. For dichotomous outcome measures, one possible strategy is to carry out a sensitivity analysis based on the so-called best case/worst case analyses. For continuous outcomes, it may be possible to achieve this if we can dichotomise the continuous outcomes. Here, we empirically examined the appropriateness of converting continuous outcomes (expressed as mean+/-SD) into dichotomous outcomes (expressed as response rates) in four completed meta-analyses of depression and anxiety, assuming normal distribution of the continuous outcome measures. The agreement between the actually observed versus the imputed raw numbers of responders was indicated by an intraclass correlation coefficient of 0.97 (95% confidence interval 0.95-0.98). The pooled relative risks of the four meta-analyses based on the imputed values were virtually identical to those based on the actually observed values. When individual trials report the means+/-SDs of their outcome measures but fail to report response rates, it may therefore be possible to impute the response rates based on the means+/-SDs, and then submit the meta-analysis to worst case/best case analyses. This would allow a more robust and clinically interpretable estimation of the true, underlying treatment effect to be made.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
氵漏漏发布了新的文献求助10
1秒前
1秒前
1秒前
丘比特应助醉月采纳,获得10
1秒前
淡淡土豆应助sunly采纳,获得10
2秒前
2秒前
lx完成签到,获得积分10
2秒前
深情安青应助zy采纳,获得10
2秒前
科研通AI6应助Fighter采纳,获得10
2秒前
Jasper应助hbkyt采纳,获得10
2秒前
zzioo发布了新的文献求助10
3秒前
3秒前
jeitt完成签到,获得积分10
4秒前
4秒前
王羊补牢完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
More发布了新的文献求助10
5秒前
icypz628发布了新的文献求助10
6秒前
0717号执行官完成签到,获得积分10
6秒前
波西米亚完成签到,获得积分10
6秒前
无花果应助张志迪采纳,获得10
6秒前
6秒前
绵糖悠悠羊完成签到,获得积分10
7秒前
7秒前
7秒前
zheng-homes发布了新的文献求助10
7秒前
王太祖完成签到,获得积分10
9秒前
852应助fxy采纳,获得10
9秒前
万能图书馆应助yeahCZY采纳,获得10
9秒前
kidney发布了新的文献求助10
10秒前
小状元发布了新的文献求助10
10秒前
悠悠完成签到,获得积分10
11秒前
JamesPei应助阔达的烧鹅采纳,获得10
11秒前
酷波er应助wait采纳,获得10
11秒前
Yuan发布了新的文献求助10
11秒前
zy发布了新的文献求助10
12秒前
Lucas应助yongkun采纳,获得10
13秒前
zheng-homes完成签到,获得积分10
13秒前
冷傲的如凡完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525453
求助须知:如何正确求助?哪些是违规求助? 4615640
关于积分的说明 14549575
捐赠科研通 4553716
什么是DOI,文献DOI怎么找? 2495470
邀请新用户注册赠送积分活动 1476017
关于科研通互助平台的介绍 1447758