Artificial neural networks for rf and microwave design-from theory to practice

人工神经网络 计算机科学 电子工程 人工智能 微波食品加热 计算机工程 机器学习 工程类 电信
作者
Qijun Zhang,K.C. Gupta,Vijay Devabhaktuni
出处
期刊:IEEE Transactions on Microwave Theory and Techniques 卷期号:51 (4): 1339-1350 被引量:595
标识
DOI:10.1109/tmtt.2003.809179
摘要

Neural-network computational modules have recently gained recognition as an unconventional and useful tool for RF and microwave modeling and design. Neural networks can be trained to learn the behavior of passive/active components/circuits. A trained neural network can be used for high-level design, providing fast and accurate answers to the task it has learned. Neural networks are attractive alternatives to conventional methods such as numerical modeling methods, which could be computationally expensive, or analytical methods which could be difficult to obtain for new devices, or empirical modeling solutions whose range and accuracy may be limited. This tutorial describes fundamental concepts in this emerging area aimed at teaching RF/microwave engineers what neural networks are, why they are useful, when they can be used, and how to use them. Neural-network structures and their training methods are described from the RF/microwave designer's perspective. Electromagnetics-based training for passive component models and physics-based training for active device models are illustrated. Circuit design and yield optimization using passive/active neural models are also presented. A multimedia slide presentation along with narrative audio clips is included in the electronic version of this paper. A hyperlink to the NeuroModeler demonstration software is provided to allow readers practice neural-network-based design concepts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
故意的傲玉应助Anquan采纳,获得10
刚刚
inshialla完成签到 ,获得积分10
1秒前
youjiang发布了新的文献求助10
1秒前
heidi发布了新的文献求助10
1秒前
lxd完成签到,获得积分10
2秒前
2秒前
标致的蛋挞完成签到,获得积分10
2秒前
YanChengHan发布了新的文献求助10
2秒前
大模型应助wyhhh采纳,获得10
3秒前
科研通AI5应助苏苏采纳,获得10
3秒前
科研通AI5应助苏苏采纳,获得10
3秒前
4秒前
zmk发布了新的文献求助10
4秒前
逍遥呱呱发布了新的文献求助10
6秒前
所所应助D先生采纳,获得20
8秒前
8秒前
frank完成签到,获得积分10
9秒前
张学友发布了新的文献求助30
12秒前
Rex发布了新的文献求助10
12秒前
13秒前
淡淡冬瓜完成签到,获得积分10
13秒前
orixero应助heidi采纳,获得30
14秒前
16秒前
危机的酒窝完成签到,获得积分10
16秒前
17秒前
hhl完成签到,获得积分10
18秒前
ck完成签到,获得积分10
18秒前
2393843435完成签到,获得积分20
19秒前
20秒前
余姚发布了新的文献求助10
20秒前
zhouyane完成签到,获得积分10
21秒前
rosalieshi完成签到,获得积分0
22秒前
星辰大海完成签到 ,获得积分10
23秒前
WQY发布了新的文献求助10
23秒前
25秒前
buno应助求助采纳,获得10
25秒前
尘扬完成签到,获得积分10
25秒前
26秒前
27秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851