Artificial neural networks for rf and microwave design-from theory to practice

人工神经网络 计算机科学 电子工程 人工智能 微波食品加热 计算机工程 机器学习 工程类 电信
作者
Qijun Zhang,K.C. Gupta,Vijay Devabhaktuni
出处
期刊:IEEE Transactions on Microwave Theory and Techniques 卷期号:51 (4): 1339-1350 被引量:595
标识
DOI:10.1109/tmtt.2003.809179
摘要

Neural-network computational modules have recently gained recognition as an unconventional and useful tool for RF and microwave modeling and design. Neural networks can be trained to learn the behavior of passive/active components/circuits. A trained neural network can be used for high-level design, providing fast and accurate answers to the task it has learned. Neural networks are attractive alternatives to conventional methods such as numerical modeling methods, which could be computationally expensive, or analytical methods which could be difficult to obtain for new devices, or empirical modeling solutions whose range and accuracy may be limited. This tutorial describes fundamental concepts in this emerging area aimed at teaching RF/microwave engineers what neural networks are, why they are useful, when they can be used, and how to use them. Neural-network structures and their training methods are described from the RF/microwave designer's perspective. Electromagnetics-based training for passive component models and physics-based training for active device models are illustrated. Circuit design and yield optimization using passive/active neural models are also presented. A multimedia slide presentation along with narrative audio clips is included in the electronic version of this paper. A hyperlink to the NeuroModeler demonstration software is provided to allow readers practice neural-network-based design concepts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心的砖头完成签到 ,获得积分10
刚刚
谢昱完成签到,获得积分20
刚刚
kkk完成签到 ,获得积分10
刚刚
Nana发布了新的文献求助30
1秒前
2秒前
AndyLin完成签到,获得积分20
3秒前
谢昱发布了新的文献求助10
3秒前
大胆的草莓完成签到 ,获得积分10
4秒前
活泼的乐枫完成签到,获得积分10
5秒前
南浔完成签到,获得积分10
5秒前
mgl完成签到,获得积分10
6秒前
pj完成签到,获得积分20
8秒前
10秒前
10秒前
linbei完成签到,获得积分10
11秒前
12秒前
12秒前
14秒前
刘晓倩发布了新的文献求助10
14秒前
沉默冬易完成签到,获得积分10
15秒前
yzlsci完成签到,获得积分0
16秒前
clove发布了新的文献求助10
16秒前
阿泽发布了新的文献求助30
17秒前
谷粱寒烟发布了新的文献求助10
17秒前
江璃发布了新的文献求助10
18秒前
19秒前
研友_8DWkVZ完成签到,获得积分10
21秒前
光亮又晴完成签到 ,获得积分10
24秒前
26秒前
Sherme发布了新的文献求助10
26秒前
delta发布了新的文献求助10
27秒前
27秒前
阿泽完成签到,获得积分10
27秒前
传奇3应助爱笑的万天采纳,获得10
30秒前
入秋的杰尼龟完成签到,获得积分10
30秒前
恰饭完成签到,获得积分10
31秒前
Spark发布了新的文献求助10
31秒前
风中听枫发布了新的文献求助10
32秒前
32秒前
Lucas应助阳光小虾米采纳,获得10
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137545
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787226
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300083
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023