Dynamic Modeling of Driver Control Strategy of Lane-Change Behavior and Trajectory Planning for Collision Prediction

加速度 弹道 职位(财务) 计算机科学 碰撞 模拟 车辆动力学 过程(计算) 控制理论(社会学) 控制(管理) 工程类 人工智能 汽车工程 操作系统 经济 物理 天文 经典力学 计算机安全 财务
作者
Guoqing Xu,Li Liu,Yongsheng Ou,Zhangjun Song
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:13 (3): 1138-1155 被引量:111
标识
DOI:10.1109/tits.2012.2187447
摘要

This paper introduces a dynamic model of the driver control strategy of lane-change behavior and applies it to trajectory planning in driver-assistance systems. The proposed model reflects the driver control strategies of adjusting longitudinal and latitudinal acceleration during the lane-change process and can represent different driving styles (such as slow and careful, as well as sudden and aggressive) by using different model parameters. We also analyze the features of the dynamic model and present the methods for computing the maximum latitudinal position and arrival time. Furthermore, we put forward an extended dynamic model to represent evasive lane-change behavior. Compared with the fifth-order polynomial lane-change model, the dynamic models fit actual lane-change trajectories better and can generate more accurate lane-change trajectories. We apply the dynamic models in emulating different lane-change strategies and planning lane-change trajectories for collision prediction. In the simulation, we use the models to compute the percentage of safe trajectories in different scenarios. The simulation shows that the maximum latitudinal position and arrival time of the generated lane-change trajectories can be good indicators of safe lane-change trajectories. In the field test, the dynamic models can generate the feasible lane-change trajectories and efficiently obtain the percentage of safe trajectories by computing the minimum gap and time to collision. The proposed dynamic model and module can be combined with the human-machine interface to help the driver easily identify safe lane-change trajectories and area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
分析法FXF应助皮皮采纳,获得20
2秒前
哈利波特大完成签到,获得积分10
2秒前
2秒前
等风来完成签到,获得积分20
3秒前
3秒前
3秒前
zzmyyds完成签到,获得积分10
3秒前
6秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
乐乐应助Mnegya采纳,获得10
7秒前
7秒前
nicoco完成签到,获得积分10
8秒前
酷波er应助CY采纳,获得10
8秒前
Tonykoose发布了新的文献求助10
11秒前
panghu完成签到,获得积分10
11秒前
wanci应助何安采纳,获得10
11秒前
英姑应助周周采纳,获得10
12秒前
尤野发布了新的文献求助10
12秒前
Swift168_YY完成签到 ,获得积分10
12秒前
小魏完成签到,获得积分10
12秒前
13秒前
blusky完成签到,获得积分10
14秒前
wenjun_50完成签到,获得积分10
14秒前
15秒前
SciGPT应助年年年年采纳,获得10
15秒前
15秒前
15秒前
16秒前
blusky发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助30
18秒前
pfffff完成签到,获得积分10
19秒前
wanci应助hihi采纳,获得10
19秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
6wt完成签到,获得积分10
20秒前
20秒前
绿茶不茶完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717887
求助须知:如何正确求助?哪些是违规求助? 5248869
关于积分的说明 15283627
捐赠科研通 4867961
什么是DOI,文献DOI怎么找? 2613978
邀请新用户注册赠送积分活动 1563880
关于科研通互助平台的介绍 1521369