Dynamic Modeling of Driver Control Strategy of Lane-Change Behavior and Trajectory Planning for Collision Prediction

加速度 弹道 职位(财务) 计算机科学 碰撞 模拟 车辆动力学 过程(计算) 控制理论(社会学) 控制(管理) 工程类 人工智能 汽车工程 物理 计算机安全 天文 财务 经典力学 经济 操作系统
作者
Guoqing Xu,Li Liu,Yongsheng Ou,Zhangjun Song
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:13 (3): 1138-1155 被引量:111
标识
DOI:10.1109/tits.2012.2187447
摘要

This paper introduces a dynamic model of the driver control strategy of lane-change behavior and applies it to trajectory planning in driver-assistance systems. The proposed model reflects the driver control strategies of adjusting longitudinal and latitudinal acceleration during the lane-change process and can represent different driving styles (such as slow and careful, as well as sudden and aggressive) by using different model parameters. We also analyze the features of the dynamic model and present the methods for computing the maximum latitudinal position and arrival time. Furthermore, we put forward an extended dynamic model to represent evasive lane-change behavior. Compared with the fifth-order polynomial lane-change model, the dynamic models fit actual lane-change trajectories better and can generate more accurate lane-change trajectories. We apply the dynamic models in emulating different lane-change strategies and planning lane-change trajectories for collision prediction. In the simulation, we use the models to compute the percentage of safe trajectories in different scenarios. The simulation shows that the maximum latitudinal position and arrival time of the generated lane-change trajectories can be good indicators of safe lane-change trajectories. In the field test, the dynamic models can generate the feasible lane-change trajectories and efficiently obtain the percentage of safe trajectories by computing the minimum gap and time to collision. The proposed dynamic model and module can be combined with the human-machine interface to help the driver easily identify safe lane-change trajectories and area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
soso应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
yizhiGao应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
星威应助科研通管家采纳,获得20
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
1秒前
天天快乐应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
研友_VZG7GZ应助kevindeng采纳,获得20
2秒前
酷炫板凳完成签到 ,获得积分10
3秒前
凡仔完成签到,获得积分10
3秒前
Haicheng完成签到,获得积分10
3秒前
3秒前
Grayball应助平云采纳,获得10
4秒前
子车谷波完成签到,获得积分10
5秒前
5秒前
苏安泠完成签到 ,获得积分10
6秒前
6秒前
英勇的思天完成签到 ,获得积分10
7秒前
zzqx完成签到,获得积分10
9秒前
起司嗯完成签到,获得积分10
9秒前
开放鸵鸟完成签到,获得积分10
9秒前
徐徐发布了新的文献求助10
9秒前
ZZZ发布了新的文献求助10
10秒前
懵懂的子骞完成签到 ,获得积分10
11秒前
mammoth发布了新的文献求助40
11秒前
11秒前
英俊的铭应助Chang采纳,获得10
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762