Robust Superhydrophobic Carbon Nanotube Film with Lotus Leaf Mimetic Multiscale Hierarchical Structures

碳纳米管 材料科学 纳米技术 莲花效应 涂层 表面能 化学气相沉积 超疏水涂料 复合材料 纳米尺度 化学工程 微尺度化学 超亲水性 纳米结构 基质(水族馆) 润湿 结构着色 石墨烯 接触角 纳米管 数学教育 数学 有机化学 化学 原材料
作者
Pengwei Wang,Tianyi Zhao,Ruixin Bian,Guangyan Wang,Huan Liu
出处
期刊:ACS Nano [American Chemical Society]
卷期号:11 (12): 12385-12391 被引量:104
标识
DOI:10.1021/acsnano.7b06371
摘要

Superhydrophobic carbon nanotube (CNT) films have demonstrated many fascinating performances in versatile applications, especially for those involving solid/liquid interfacial processes, because of their ability to affect the material/energy transfer at interfaces. Thus, developing superhydrophobic CNTs has attracted extensive research interests in the past decades, and it could be achieved either by surface coating of low-free energy materials or by constructing micro/nanohierarchical structures via various complicated processes. So far, developing a simple approach to fabricate stable superhydrophobic CNTs remains a challenge because the capillary force induced coalescence frequently happens when interacting with liquid. Herein, drawing inspirations from the lotus leaf, we proposed a simple one-step chemical vapor deposition approach with programmable controlled gas flow to directly fabricate a CNT film with rather stable superhydrophobicity, which can effectively prevent even small water droplets from permeating into the film. The robust superhydrophobicity was attributable to typical lotus-leaf-like micro/nanoscale hierarchical surface structures of the CNT film, where many microscale clusters composed of entangled nanotubes randomly protrude out of the under-layer aligned nanotubes. Consequently, dual-scale air pockets were trapped within each microscale CNT cluster and between, which could largely reduce the liquid/solid interface, leading to a Cassie state. Moreover, the superhydrophobicity of the CNT film showed excellent durability after long time exposure to air and even to corrosive liquids with a wide range of pH values. We envision that the approach developed is advantageous for versatile physicochemical interfacial processes, such as drag reduction, electrochemical catalysis, anti-icing, and biosensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懵懂的灭男关注了科研通微信公众号
2秒前
可爱的函函应助wxx采纳,获得10
2秒前
所所应助奥一奥采纳,获得10
3秒前
3秒前
4秒前
6秒前
非人非木发布了新的文献求助200
9秒前
不安的嘉懿完成签到 ,获得积分10
9秒前
9秒前
12秒前
13秒前
杳鸢应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得30
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
argon完成签到,获得积分10
14秒前
萨特完成签到,获得积分10
14秒前
四角水发布了新的文献求助10
17秒前
阔达的太阳完成签到,获得积分10
20秒前
务实的又柔完成签到,获得积分10
20秒前
Bressanone发布了新的文献求助10
21秒前
22秒前
nickel完成签到,获得积分10
25秒前
30秒前
丁仪完成签到,获得积分10
30秒前
搜集达人应助--采纳,获得10
31秒前
32秒前
NZH发布了新的文献求助20
33秒前
34秒前
wxx完成签到,获得积分10
35秒前
小火锅发布了新的文献求助10
36秒前
38秒前
38秒前
jj发布了新的文献求助10
40秒前
40秒前
orixero应助快乐的晓刚采纳,获得10
42秒前
43秒前
--发布了新的文献求助10
44秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161014
求助须知:如何正确求助?哪些是违规求助? 2812392
关于积分的说明 7895364
捐赠科研通 2471232
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602094