纳米探针
生物医学中的光声成像
材料科学
荧光
表征(材料科学)
纳米技术
红外线的
荧光寿命成像显微镜
纳米颗粒
光学
物理
作者
Kai Cheng,Hao Chen,C Jenkins,Guanglei Zhang,Wei Zhao,Zhe Zhang,Fei Han,Jonathan Fung,Meng Yang,Yuxin Jiang,Lei Xing,Zhen Cheng
出处
期刊:ACS Nano
[American Chemical Society]
日期:2017-12-04
卷期号:11 (12): 12276-12291
被引量:142
标识
DOI:10.1021/acsnano.7b05966
摘要
Our development of multifunctional dual-modal imaging probes aims to integrate the benefits from both second near-infrared (NIR-II) fluorescence (1000-1700 nm) and photoacoustic imaging with an ultimate goal of improving overall cancer diagnosis efficacy. Herein we designed a donor-acceptor chromophore based nanoparticle (DAP) as a dual-modal image contrast agent has strong absorption in the NIR-I window and a strong fluorescence emission peak in the NIR-II region. The dual-modal DAPs composed of D-π-A-π-D-type chromophores were PEGylated through nanoprecipitation. The multifunctional DAP surface was thus available for subsequent bioconjugation of EGFR Affibody (Ac-Cys-ZEGFR:1907) to target EGFR-positive cancers. The Affibody-conjugated DAPs appeared as highly monodisperse nanoparticles (∼30 nm) with strong absorption in the NIR-I window (at ca. 680 nm) and an extremely high fluorescence in the NIR-II region (maximum peak at 1000 nm). Consequently, the Affibody-DAPs show significantly enhanced photoacoustic and NIR-II fluorescence contrast effects in both in vitro and in vivo experiments. Moreover, the Affibody-DAPs have the capability to selectively target EGFR-positive tumors in an FTC-133 subcutaneous mouse model with relatively high photoacoustic and fluorescent signals. By taking advantage of high spatial resolution and excellent temporal resolution, photoacoustic/NIR-II fluorescence imaging with targeted dual-modal contrast agents allows us to specifically image and detect various cancers and diseases in an accurate manner.
科研通智能强力驱动
Strongly Powered by AbleSci AI