已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Optimizing RNA‐seq studies to investigate herbicide resistance

RNA序列 复制 假阳性悖论 联营 计算生物学 错误发现率 生物 深度测序 转录组 生物技术 基因 遗传学 计算机科学 基因组 人工智能 基因表达 统计 数学
作者
Darci A. Giacomini,Todd A. Gaines,Roland Beffa,Patrick J. Tranel
出处
期刊:Pest Management Science [Wiley]
卷期号:74 (10): 2260-2264 被引量:34
标识
DOI:10.1002/ps.4822
摘要

Abstract Transcriptomic profiling, specifically via RNA sequencing (RNA‐seq), is becoming one of the more commonly used methods for investigating non‐target site resistance (NTSR) to herbicides due to its high throughput capabilities and utility in organisms with little to no previous sequence information. A review of the weed science RNA‐seq literature revealed some basic principles behind generating quality data from these types of studies. First, studies that included more replicates per biotype and took steps to control for genetic background had significantly better control of false positives and, consequently, shorter lists of potential resistance genes to sift through. Pooling of biological replicates prior to sequencing was successful in some cases, but likely contributed to an overall increase in the false discovery rate. Although the inclusion of herbicide‐treated samples was common across most of the studies, it ultimately introduced difficulties in interpretation of the final results due to challenges in capturing the right sampling window after treatment and to the induction of stress responses in the injured herbicide‐sensitive plants. RNA‐seq is an effective tool for NTSR gene discovery, but careful consideration should be given to finding the most powerful and cost‐effective balance between replicate number, sequencing depth and treatment number. © 2017 Society of Chemical Industry
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
两棵树完成签到,获得积分10
1秒前
NexusExplorer应助LHS采纳,获得10
1秒前
阿君发布了新的文献求助10
1秒前
雨衣完成签到 ,获得积分10
2秒前
Iris完成签到 ,获得积分10
4秒前
春山完成签到 ,获得积分10
5秒前
6秒前
8秒前
Research完成签到 ,获得积分10
9秒前
哈哈哈完成签到,获得积分10
11秒前
12秒前
樱桃猴子完成签到,获得积分10
14秒前
14秒前
WUHUDASM发布了新的文献求助10
17秒前
啊强完成签到 ,获得积分10
19秒前
Chen发布了新的文献求助20
19秒前
青竹完成签到,获得积分10
22秒前
小怪完成签到,获得积分10
23秒前
懒羊羊大王完成签到 ,获得积分10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
共享精神应助科研通管家采纳,获得10
23秒前
脑洞疼应助科研通管家采纳,获得10
23秒前
orixero应助科研通管家采纳,获得10
23秒前
深情安青应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
bkagyin应助科研通管家采纳,获得10
23秒前
23秒前
25秒前
Ethan完成签到 ,获得积分0
26秒前
科研通AI5应助elisa828采纳,获得10
29秒前
lsl完成签到,获得积分20
29秒前
31秒前
小彤完成签到 ,获得积分10
32秒前
马騳骉完成签到,获得积分10
37秒前
yiren完成签到 ,获得积分10
37秒前
科研通AI5应助开天神秀采纳,获得10
38秒前
书文混四方完成签到 ,获得积分10
40秒前
Fn完成签到 ,获得积分10
43秒前
43秒前
YDSL完成签到,获得积分10
45秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544311
求助须知:如何正确求助?哪些是违规求助? 3121491
关于积分的说明 9347496
捐赠科研通 2819748
什么是DOI,文献DOI怎么找? 1550401
邀请新用户注册赠送积分活动 722526
科研通“疑难数据库(出版商)”最低求助积分说明 713265