数学
嵌入
有限元法
混合有限元法
非线性系统
数学分析
扩展有限元法
索波列夫空间
抛物型偏微分方程
应用数学
偏微分方程
计算机科学
量子力学
热力学
物理
人工智能
作者
Huadong Gao,Weifeng Qiu
标识
DOI:10.1007/s10915-018-0643-8
摘要
In this paper, we prove a discrete embedding inequality for the Raviart–Thomas mixed finite element methods for second order elliptic equations, which is analogous to the Sobolev embedding inequality in the continuous setting. Then, by using the proved discrete embedding inequality, we provide an optimal error estimate for linearized mixed finite element methods for nonlinear parabolic equations. Several numerical examples are provided to confirm the theoretical analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI