Micromechanical modeling for mechanical properties of gradient-nanotwinned metals with a composite microstructure

微观结构 复合数 材料科学 复合材料
作者
Kai Wu,Xiang Guo,Haihui Ruan,Linli Zhu
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier]
卷期号:703: 180-186 被引量:10
标识
DOI:10.1016/j.msea.2017.07.012
摘要

Abstract Nanotwinned metals with a gradient microstructure have attracted a great deal of attention due to their excellent mechanical performance of combining high strength and high ductility. In this work, a micromechanical model is developed to describe the stress-strain response of gradient-nanotwinned metals with a composite microstructure. The deformation mechanisms originated from bimodal grain size distribution in nanostructured materials and nanoscale twin lamellae in a grain are involved in derivation of flow stress. The contributions from the gradient distribution of microstructural size and the microcracks during plastic deformation are taken into account in simulating the mechanical properties such as the yield strength and ductility. Using the proposed model, we figure out the stress-strain relation of gradient nanostructured metals and analyze the quantitative relation between the mechanical properties and the geometrical/physical parameters related to the gradient-nanotwinned composite copper. Numerical results show that, the strength and ductility of the gradient-nanotwinned bimodal metals are both improved as twins spacing decreases. With the volume fraction of coarse-grained phase decreased, the strength is improved significantly accompanied by slight reduction of the ductility. In addition, the simulated results are in a good agreement with experimental results. The present work could be helpful to describe and predict the elastic-plastic deformation behavior of gradient nanostructured composite -metals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cheng_jue完成签到 ,获得积分10
刚刚
刚刚
DonJuan发布了新的文献求助10
刚刚
Helic发布了新的文献求助10
刚刚
tian发布了新的文献求助30
1秒前
2秒前
小代完成签到,获得积分10
2秒前
daggeraxe完成签到 ,获得积分10
2秒前
2秒前
Azurikasy完成签到,获得积分10
3秒前
幽默的泥猴桃完成签到,获得积分10
3秒前
3秒前
3秒前
石头发布了新的文献求助10
4秒前
Fa完成签到,获得积分10
4秒前
是冬天完成签到,获得积分10
5秒前
王彦林发布了新的文献求助10
5秒前
马幸运发布了新的文献求助10
5秒前
6秒前
jiu发布了新的文献求助10
7秒前
li完成签到,获得积分10
7秒前
浪子应助大力飞雪采纳,获得10
7秒前
辣辣发布了新的文献求助10
7秒前
小章发布了新的文献求助10
7秒前
8秒前
雨雨发布了新的文献求助10
8秒前
myt完成签到,获得积分20
8秒前
华仔应助cc采纳,获得10
9秒前
9秒前
爆米花完成签到,获得积分20
9秒前
10秒前
xrf完成签到,获得积分10
10秒前
10秒前
morry5007发布了新的文献求助10
10秒前
左丘以云完成签到,获得积分10
10秒前
10秒前
无极微光应助小包子采纳,获得20
10秒前
Akim应助ZIS采纳,获得10
10秒前
威武爆米花完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836