An Investigation of Partition-Based and Phonetically-Aware Acoustic Features for Continuous Emotion Prediction from Speech

价(化学) 唤醒 语音识别 计算机科学 声学空间 情绪识别 语音处理 语音学 自然语言处理 人工智能 心理学 声学 语言学 声波 哲学 物理 神经科学 量子力学
作者
Zhaocheng Huang,Julien Epps
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 653-668 被引量:20
标识
DOI:10.1109/taffc.2018.2821135
摘要

Phonetic variability has long been considered a confounding factor for emotional speech processing, so phonetic features have been rarely explored. However, surprisingly some features with purely phonetic information have shown state-of-the-art performance for continuous prediction of emotions (e.g., arousal and valence), for which the underlying causes are unknown to date. In this article, we present in-depth investigations into phonetic features on three widely used corpora - RECOLA, SEMAINE and USC CreativeIT - to explore this from two perspectives: acoustic space partitioning information and phonetic content. First, comparisons of multiple different partitioning methods confirm the significance of partitioning information in speech, and reveal the new understanding that varying the number of partitions has a greater effect on valence than arousal prediction: a detailed representation of the acoustic space is needed for valence, whilst a general one is adequate for arousal. Second, phoneme-specific examination of phonetic features suggests that phonetic content is less emotionally informative than partitioning information, and is more important for arousal than for valence. Furthermore, we propose a novel set of phonetically-aware acoustic features, attaining significant improvements for valence (in particular) and arousal prediction across RECOLA, SEMAINE and CreativeIT respectively, compared with conventional reference acoustic features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助kefir采纳,获得30
刚刚
DayLight完成签到,获得积分10
刚刚
刚刚
Orange应助橘子采纳,获得10
1秒前
zhaoh发布了新的文献求助10
1秒前
丘比特应助搞搞学术吧采纳,获得10
1秒前
领导范儿应助林新宇采纳,获得10
2秒前
2秒前
研友_VZG7GZ应助thecastle采纳,获得10
2秒前
Y神发布了新的文献求助10
2秒前
iNk应助Proustian采纳,获得10
3秒前
酷波er应助zsming采纳,获得10
3秒前
顾矜应助Jennifer采纳,获得10
4秒前
4秒前
哭泣飞瑶发布了新的文献求助10
4秒前
5秒前
5秒前
简单的雁菱完成签到 ,获得积分10
6秒前
yanxuepig完成签到,获得积分10
6秒前
JM发布了新的文献求助10
6秒前
yellow_0000完成签到,获得积分10
6秒前
7秒前
小蘑菇应助zhaoh采纳,获得10
7秒前
林新宇发布了新的文献求助10
7秒前
温梦花雨完成签到 ,获得积分10
7秒前
恒弟弟发布了新的文献求助10
8秒前
传奇3应助glass_light采纳,获得10
8秒前
8秒前
自由的箴发布了新的文献求助30
9秒前
9秒前
10秒前
huilihub发布了新的文献求助10
10秒前
10秒前
10秒前
烂漫书萱完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
111关注了科研通微信公众号
13秒前
Jennifer完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434739
求助须知:如何正确求助?哪些是违规求助? 4547066
关于积分的说明 14205914
捐赠科研通 4467159
什么是DOI,文献DOI怎么找? 2448413
邀请新用户注册赠送积分活动 1439364
关于科研通互助平台的介绍 1416076