摘要
The hippocampus is a vulnerable brain region that is implicated in learning and memory impairment by two pathophysiological features, that is, neurite regression and synaptic dysfunction, and stigmasterol (ST), a cholesterol-equivalent phytosterol, is known to facilitate neuromodulatory effects. To investigate the neuromodulatory effects of ST on the development of central nervous system neurons and the molecular bases of these effects in primary hippocampal neurons. Rat embryonic (E18-19) brain neurons were cultured in the absence or presence of ST (75 µM). Neuritogenic activities of ST were evident by increases in various morphometric parameters. To identify underlying affected genes, total RNA was isolated on day in vitro 12 (DIV 12) and mRNA high throughput sequencing (mRNA-Seq) was performed. Affected key genes for neuronal development were identified using bioinformatics tools and their upregulations were confirmed by immunocytochemistry. Among the differentially expressed 17,337 RefSeq genes, 445 genes (up/down 293/157) passed the p-value < 0.05 criterion, 52 genes (up/down; 37/13) had a p-value < 0.05 and a false discovery rate (FDR) q-value of < 0.2, and 24 genes (up/down; 20/4) passed the more stringent criterion of both p < 0.05 and q < 0.05. After applying a stringent FDR q-value cutoff of < 0.2, it was found ST induced many immediate early genes (IEGs), and that a major proportion of upregulated genes were related to central nervous system (CNS) development (neurite outgrowth or synaptic transmission). In a Venn diagram for CNS development Gene Ontologies (GOs) (i.e., axon development, dendrite development, modulation of synaptic transmission), Reln emerged as a central player in these processes, and highly interconnected ‘hub’ genes, including Dcx, Egr1, Ntrk2, and Slc24a2, were revealed by gene co-expression networks. Finally, transcriptomic data was confirmed by immunocytochemistry of primary hippocampal neurons. The study indicates that ST upregulates genes for neuritogenesis and synaptogenesis, and suggests ST be viewed as a potential resource for improving brain functions.