PolSAR Image Classification Using Polarimetric-Feature-Driven Deep Convolutional Neural Network

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 深度学习 上下文图像分类 合成孔径雷达 分类器(UML) 特征提取 图像(数学)
作者
Si-Wei Chen,Chen-Song Tao
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:15 (4): 627-631 被引量:211
标识
DOI:10.1109/lgrs.2018.2799877
摘要

Polarimetric synthetic aperture radar (PolSAR) image classification is an important application. Advanced deep learning techniques represented by deep convolutional neural network (CNN) have been utilized to enhance the classification performance. One current challenge is how to adapt deep CNN classifier for PolSAR classification with limited training samples, while keeping good generalization performance. This letter attempts to contribute to this problem. The core idea is to incorporate expert knowledge of target scattering mechanism interpretation and polarimetric feature mining to assist deep CNN classifier training and improve the final classification performance. A polarimetric-feature-driven deep CNN classification scheme is established. Both classical roll-invariant polarimetric features and hidden polarimetric features in the rotation domain are used to drive the proposed deep CNN model. Comparison studies validate the efficiency and superiority of the proposal. For the benchmark AIRSAR data, the proposed method achieves the state-of-the-art classification accuracy. Meanwhile, the convergence speed from the proposed polarimetric-feature-driven CNN approach is about 2.3 times faster than the normal CNN method. For multitemporal UAVSAR data sets, the proposed scheme achieves comparably high classification accuracy as the normal CNN method for train-used temporal data, while for train-not-used data it obtains an average of 4.86% higher overall accuracy than the normal CNN method. Furthermore, the proposed strategy can also produce very promising classification accuracy even with very limited training samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蔡丽发布了新的文献求助10
刚刚
毓纡发布了新的文献求助30
1秒前
木叶完成签到,获得积分10
1秒前
DDD完成签到,获得积分10
1秒前
无花果应助侯_采纳,获得10
2秒前
书记发布了新的文献求助10
2秒前
san完成签到,获得积分10
2秒前
闲花煮茶完成签到,获得积分10
3秒前
汉堡包应助孤独的问凝采纳,获得10
4秒前
上官若男应助苗儿采纳,获得10
5秒前
科研dog发布了新的文献求助30
5秒前
5秒前
6秒前
越过山丘发布了新的文献求助10
6秒前
6秒前
阿烨完成签到,获得积分10
6秒前
可爱的大米完成签到,获得积分20
7秒前
7秒前
糯米完成签到,获得积分10
8秒前
8秒前
yyy发布了新的文献求助10
9秒前
奔腾小马发布了新的文献求助10
10秒前
punchline2025完成签到,获得积分10
10秒前
耍酷问兰发布了新的文献求助10
11秒前
97发布了新的文献求助10
11秒前
11秒前
希望天下0贩的0应助jias采纳,获得10
11秒前
Wangle发布了新的文献求助10
12秒前
12秒前
科研通AI6应助可爱的大米采纳,获得30
12秒前
无极微光应助害羞的芙蓉采纳,获得20
12秒前
14秒前
14秒前
14秒前
14秒前
16秒前
17秒前
刘鑫瑞完成签到,获得积分10
17秒前
超级ddl战士完成签到 ,获得积分10
17秒前
大眠完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540506
求助须知:如何正确求助?哪些是违规求助? 4627108
关于积分的说明 14602337
捐赠科研通 4568126
什么是DOI,文献DOI怎么找? 2504382
邀请新用户注册赠送积分活动 1481998
关于科研通互助平台的介绍 1453645