已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multiscale peak detection in wavelet space

小波 空格(标点符号) 模式识别(心理学) 计算机科学 人工智能 操作系统
作者
Zhimin Zhang,Tong Xia,Ying Peng,Pan Ma,Ming-Jin Zhang,Hongmei Lü,Xiaohong Chen,Yi‐Zeng Liang
出处
期刊:Analyst [The Royal Society of Chemistry]
卷期号:140 (23): 7955-7964 被引量:70
标识
DOI:10.1039/c5an01816a
摘要

Accurate peak detection is essential for analyzing high-throughput datasets generated by analytical instruments. Derivatives with noise reduction and matched filtration are frequently used, but they are sensitive to baseline variations, random noise and deviations in the peak shape. A continuous wavelet transform (CWT)-based method is more practical and popular in this situation, which can increase the accuracy and reliability by identifying peaks across scales in wavelet space and implicitly removing noise as well as the baseline. However, its computational load is relatively high and the estimated features of peaks may not be accurate in the case of peaks that are overlapping, dense or weak. In this study, we present multi-scale peak detection (MSPD) by taking full advantage of additional information in wavelet space including ridges, valleys, and zero-crossings. It can achieve a high accuracy by thresholding each detected peak with the maximum of its ridge. It has been comprehensively evaluated with MALDI-TOF spectra in proteomics, the CAMDA 2006 SELDI dataset as well as the Romanian database of Raman spectra, which is particularly suitable for detecting peaks in high-throughput analytical signals. Receiver operating characteristic (ROC) curves show that MSPD can detect more true peaks while keeping the false discovery rate lower than MassSpecWavelet and MALDIquant methods. Superior results in Raman spectra suggest that MSPD seems to be a more universal method for peak detection. MSPD has been designed and implemented efficiently in Python and Cython. It is available as an open source package at .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李亚浩完成签到,获得积分20
刚刚
1秒前
ding应助刘言采纳,获得10
3秒前
4秒前
yyds应助GooodMa采纳,获得50
4秒前
4秒前
5秒前
沉静海白完成签到,获得积分20
7秒前
7秒前
9秒前
瞌睡虫子完成签到 ,获得积分10
9秒前
柠VV完成签到,获得积分10
9秒前
淡淡萍应助Mufreh采纳,获得50
10秒前
10秒前
沉静海白发布了新的文献求助10
10秒前
默默发布了新的文献求助10
10秒前
11秒前
呼呼爱学习完成签到,获得积分10
13秒前
Orange应助李dabao采纳,获得10
15秒前
17秒前
pariscxl完成签到,获得积分10
18秒前
枝头树上的布谷鸟完成签到 ,获得积分10
18秒前
耍酷的鹰完成签到,获得积分10
21秒前
杨忆锋发布了新的文献求助10
21秒前
小黄不熬夜完成签到 ,获得积分10
21秒前
22秒前
25秒前
呆萌井完成签到,获得积分10
27秒前
nipanpan发布了新的文献求助10
28秒前
皮代谷完成签到,获得积分10
29秒前
32秒前
羞涩的寒松完成签到,获得积分10
32秒前
小冉完成签到 ,获得积分10
33秒前
Zeno完成签到 ,获得积分10
38秒前
LIU完成签到 ,获得积分10
41秒前
41秒前
脆弱小虾米完成签到 ,获得积分20
43秒前
TS发布了新的文献求助20
46秒前
刘言发布了新的文献求助10
46秒前
CipherSage应助科研通管家采纳,获得10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714043
求助须知:如何正确求助?哪些是违规求助? 5220045
关于积分的说明 15272610
捐赠科研通 4865609
什么是DOI,文献DOI怎么找? 2612231
邀请新用户注册赠送积分活动 1562407
关于科研通互助平台的介绍 1519591