Multiscale peak detection in wavelet space

小波 空格(标点符号) 模式识别(心理学) 计算机科学 人工智能 操作系统
作者
Zhimin Zhang,Tong Xia,Ying Peng,Pan Ma,Ming-Jin Zhang,Hongmei Lü,Xiaohong Chen,Yi‐Zeng Liang
出处
期刊:Analyst [The Royal Society of Chemistry]
卷期号:140 (23): 7955-7964 被引量:70
标识
DOI:10.1039/c5an01816a
摘要

Accurate peak detection is essential for analyzing high-throughput datasets generated by analytical instruments. Derivatives with noise reduction and matched filtration are frequently used, but they are sensitive to baseline variations, random noise and deviations in the peak shape. A continuous wavelet transform (CWT)-based method is more practical and popular in this situation, which can increase the accuracy and reliability by identifying peaks across scales in wavelet space and implicitly removing noise as well as the baseline. However, its computational load is relatively high and the estimated features of peaks may not be accurate in the case of peaks that are overlapping, dense or weak. In this study, we present multi-scale peak detection (MSPD) by taking full advantage of additional information in wavelet space including ridges, valleys, and zero-crossings. It can achieve a high accuracy by thresholding each detected peak with the maximum of its ridge. It has been comprehensively evaluated with MALDI-TOF spectra in proteomics, the CAMDA 2006 SELDI dataset as well as the Romanian database of Raman spectra, which is particularly suitable for detecting peaks in high-throughput analytical signals. Receiver operating characteristic (ROC) curves show that MSPD can detect more true peaks while keeping the false discovery rate lower than MassSpecWavelet and MALDIquant methods. Superior results in Raman spectra suggest that MSPD seems to be a more universal method for peak detection. MSPD has been designed and implemented efficiently in Python and Cython. It is available as an open source package at .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BowieHuang应助ivy采纳,获得10
1秒前
酷波er应助ivy采纳,获得10
1秒前
William鉴哲发布了新的文献求助10
1秒前
2秒前
jj发布了新的文献求助10
3秒前
RK_404发布了新的文献求助10
4秒前
一一应助顺心傲南采纳,获得10
5秒前
w1b完成签到,获得积分10
6秒前
7秒前
科目三应助一颗橘子洲头采纳,获得30
9秒前
cjh关闭了cjh文献求助
12秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
bin发布了新的文献求助30
18秒前
无限的含蕾完成签到,获得积分10
18秒前
888完成签到 ,获得积分10
19秒前
Owen应助今天要清零采纳,获得10
19秒前
21秒前
21秒前
奋斗小医生完成签到,获得积分10
21秒前
王志杰发布了新的文献求助10
21秒前
周灏烜完成签到,获得积分10
22秒前
111发布了新的文献求助10
23秒前
23秒前
mylene_完成签到,获得积分10
24秒前
24秒前
畅快城完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
25秒前
点凌蝶发布了新的文献求助10
26秒前
26秒前
彩色阑悦发布了新的文献求助10
26秒前
27秒前
顾矜应助花开花落花无悔采纳,获得10
27秒前
27秒前
28秒前
花花发布了新的文献求助10
28秒前
28秒前
29秒前
luanzhaohui发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711679
求助须知:如何正确求助?哪些是违规求助? 5205113
关于积分的说明 15264986
捐赠科研通 4863917
什么是DOI,文献DOI怎么找? 2611005
邀请新用户注册赠送积分活动 1561363
关于科研通互助平台的介绍 1518685