Multiscale peak detection in wavelet space

小波 空格(标点符号) 模式识别(心理学) 计算机科学 人工智能 操作系统
作者
Zhimin Zhang,Tong Xia,Ying Peng,Pan Ma,Ming-Jin Zhang,Hongmei Lü,Xiaohong Chen,Yi‐Zeng Liang
出处
期刊:Analyst [The Royal Society of Chemistry]
卷期号:140 (23): 7955-7964 被引量:70
标识
DOI:10.1039/c5an01816a
摘要

Accurate peak detection is essential for analyzing high-throughput datasets generated by analytical instruments. Derivatives with noise reduction and matched filtration are frequently used, but they are sensitive to baseline variations, random noise and deviations in the peak shape. A continuous wavelet transform (CWT)-based method is more practical and popular in this situation, which can increase the accuracy and reliability by identifying peaks across scales in wavelet space and implicitly removing noise as well as the baseline. However, its computational load is relatively high and the estimated features of peaks may not be accurate in the case of peaks that are overlapping, dense or weak. In this study, we present multi-scale peak detection (MSPD) by taking full advantage of additional information in wavelet space including ridges, valleys, and zero-crossings. It can achieve a high accuracy by thresholding each detected peak with the maximum of its ridge. It has been comprehensively evaluated with MALDI-TOF spectra in proteomics, the CAMDA 2006 SELDI dataset as well as the Romanian database of Raman spectra, which is particularly suitable for detecting peaks in high-throughput analytical signals. Receiver operating characteristic (ROC) curves show that MSPD can detect more true peaks while keeping the false discovery rate lower than MassSpecWavelet and MALDIquant methods. Superior results in Raman spectra suggest that MSPD seems to be a more universal method for peak detection. MSPD has been designed and implemented efficiently in Python and Cython. It is available as an open source package at .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助Lay采纳,获得10
刚刚
xiaominl发布了新的文献求助80
1秒前
科研牛马完成签到,获得积分10
2秒前
彭于晏应助动听锦程采纳,获得10
2秒前
XMH完成签到,获得积分10
4秒前
文静的绿真完成签到,获得积分10
4秒前
笋笋发布了新的文献求助10
4秒前
丰富的雪糕完成签到,获得积分10
5秒前
slj完成签到,获得积分10
5秒前
5秒前
我是老大应助ayu采纳,获得10
7秒前
一清完成签到,获得积分20
7秒前
10秒前
10秒前
10秒前
Ellen发布了新的文献求助10
10秒前
专注寻菱发布了新的文献求助10
10秒前
兰彻完成签到,获得积分10
10秒前
轻松戎完成签到,获得积分20
12秒前
LEE完成签到,获得积分10
13秒前
石友瑶发布了新的文献求助10
14秒前
14秒前
执着柏柳发布了新的文献求助10
16秒前
17秒前
yznfly应助仁者采纳,获得20
17秒前
脑洞疼应助刘嘉城采纳,获得10
17秒前
17秒前
17秒前
18秒前
梅子发布了新的文献求助10
20秒前
yuzhecheng发布了新的文献求助10
21秒前
1526918042发布了新的文献求助10
21秒前
Muzz完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
知悉发布了新的文献求助10
22秒前
23秒前
NexusExplorer应助张一二二二采纳,获得10
24秒前
24秒前
SKF完成签到,获得积分10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606214
求助须知:如何正确求助?哪些是违规求助? 4690656
关于积分的说明 14864955
捐赠科研通 4704298
什么是DOI,文献DOI怎么找? 2542488
邀请新用户注册赠送积分活动 1508024
关于科研通互助平台的介绍 1472232