计算机科学
传输(电信)
估计员
多路复用
人工神经网络
波分复用
加性高斯白噪声
师(数学)
传动系统
噪音(视频)
功能(生物学)
电子工程
人工智能
算法
机器学习
白噪声
波长
统计
电信
工程类
数学
光学
物理
图像(数学)
算术
生物
进化生物学
作者
Jianing Lu,Gai Zhou,Qirui Fan,Dengke Zeng,Changjian Guo,Linyue Lu,Jianqiang Li,Chongjin Xie,Chao Lu,Faisal Nadeem Khan,Alan Pak Tao Lau
出处
期刊:Journal of Optical Communications and Networking
[The Optical Society]
日期:2021-01-26
卷期号:13 (4): B35-B35
被引量:20
摘要
We conduct a comprehensive comparative study of quality-of-transmission (QoT) estimation for wavelength-division-multiplexed systems using artificial neural network (ANN)-based machine learning (ML) models and Gaussian noise (GN) model-based analytical models. To obtain the best performance for comparison, we optimize all the system parameters for GN-based models in a brute-force manner. For ML models, we optimize the number of neurons, activation function, and number of layers. In simulation settings with perfect knowledge of system parameters and communication channels, GN-based analytical models generally outperform ANN models even though GN models are less accurate on the side channels due to the local white-noise assumption. In experimental settings, however, inaccurate knowledge of various link parameters degrades GN-based models, and ML generally estimates the QoT with better accuracy. However, ML models are temporally less stable and less generalizable to different link configurations. We also briefly study potential network capacity gains resulting from improved QoT estimators and reduced operating margins.
科研通智能强力驱动
Strongly Powered by AbleSci AI