Natural Walking Trajectory Generator for Humanoid Robot Based on Three-Mass LIPFM

仿人机器人 弹道 计算机科学 发电机(电路理论) 机器人 计算机视觉 人工智能 物理 量子力学 天文 功率(物理)
作者
Ching‐Chang Wong,Sheng-Ru Xiao,H. Aoyama
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 228151-228162 被引量:2
标识
DOI:10.1109/access.2020.3046106
摘要

In this paper, a dynamic model named Three-mass Linear Inverted Pendulum plus Flywheel Model (TLIPFM) is proposed to approximate the walking motion of the humanoid robot. The mass distribution of the robot and the angular momentum of the robot are simultaneously considered to construct the dynamic model. In the mass distribution of the robot, the overall robot is divided into three parts: 1) the whole upper body of the robot, 2) the thigh of the robot's support leg, and 3) the calf of the robot's support leg, and these three weights are considered to be three masses in the proposed TLIPFM. In the angular momentum of the robot, a flywheel joint is configured at the Center of Mass (CoM) of the robot to obtain the rotational torque of the robot in biped walking. In addition, a natural walking trajectory generator based on the TLIPFM and a moving Zero Moment Point (ZMP) reference is derived to generate ZMP trajectory, CoM trajectory, and foot trajectory in three-dimensional space to let the humanoid robot walk stably. In the experiment, some results are presented to illustrate that the proposed TLIPFM can effectively reduce the model error and the proposed TLIPFM-based walking trajectory generator makes the walking trajectories more natural and walking more stable. Moreover, the proposed method is implemented on a real small-sized humanoid robot to illustrate its feasibility and practicability for the real-time biped walking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zeroing发布了新的文献求助10
刚刚
guyue发布了新的文献求助10
刚刚
刚刚
1秒前
zhs发布了新的文献求助10
1秒前
呆瓜完成签到,获得积分10
2秒前
博ge完成签到 ,获得积分10
2秒前
Luo完成签到,获得积分20
4秒前
4秒前
6秒前
kane发布了新的文献求助10
6秒前
满意丝发布了新的文献求助10
7秒前
秋夏完成签到,获得积分10
7秒前
sxj完成签到,获得积分20
8秒前
11秒前
11秒前
今后应助伶俐的血茗采纳,获得10
12秒前
纯真冷安完成签到,获得积分10
13秒前
14秒前
骄傲的叶凡完成签到,获得积分10
14秒前
cqq完成签到,获得积分20
15秒前
16秒前
16秒前
Jasper应助guyue采纳,获得10
16秒前
你今天学了多少完成签到 ,获得积分10
16秒前
thchiang发布了新的文献求助10
18秒前
20秒前
21秒前
21秒前
21秒前
sxr完成签到,获得积分10
22秒前
22秒前
mm发布了新的文献求助10
24秒前
八二力发布了新的文献求助10
26秒前
zzzj发布了新的文献求助100
26秒前
28秒前
28秒前
29秒前
eeee发布了新的文献求助20
29秒前
小马完成签到 ,获得积分10
30秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5219408
求助须知:如何正确求助?哪些是违规求助? 4393239
关于积分的说明 13678491
捐赠科研通 4255911
什么是DOI,文献DOI怎么找? 2335257
邀请新用户注册赠送积分活动 1332863
关于科研通互助平台的介绍 1287120