InstaCovNet-19: A deep learning classification model for the detection of COVID-19 patients using Chest X-ray

2019年冠状病毒病(COVID-19) 人工智能 计算机科学 精确性和召回率 肺炎 召回 深度学习 二元分类 卷积神经网络 班级(哲学) F1得分 医学 机器学习 疾病 病理 内科学 支持向量机 心理学 传染病(医学专业) 认知心理学
作者
Anunay Gupta,Anjum Ansari,Shreyansh Gupta,Rahul Katarya
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:99: 106859-106859 被引量:201
标识
DOI:10.1016/j.asoc.2020.106859
摘要

Recently, the whole world became infected by the newly discovered coronavirus (COVID-19). SARS-CoV-2, or widely known as COVID-19, has proved to be a hazardous virus severely affecting the health of people. It causes respiratory illness, especially in people who already suffer from other diseases. Limited availability of test kits as well as symptoms similar to other diseases such as pneumonia has made this disease deadly, claiming the lives of millions of people. Artificial intelligence models are found to be very successful in the diagnosis of various diseases in the biomedical field In this paper, an integrated stacked deep convolution network InstaCovNet-19 is proposed. The proposed model makes use of various pre-trained models such as ResNet101, Xception, InceptionV3, MobileNet, and NASNet to compensate for a relatively small amount of training data. The proposed model detects COVID-19 and pneumonia by identifying the abnormalities caused by such diseases in Chest X-ray images of the person infected. The proposed model achieves an accuracy of 99.08% on 3 class (COVID-19, Pneumonia, Normal) classification while achieving an accuracy of 99.53% on 2 class (COVID, NON-COVID) classification. The proposed model achieves an average recall, F1 score, and precision of 99%, 99%, and 99%, respectively on ternary classification, while achieving a 100% precision and a recall of 99% on the binary class., while achieving a 100% precision and a recall of 99% on the COVID class. InstaCovNet-19's ability to detect COVID-19 without any human intervention at an economical cost with high accuracy can benefit humankind greatly in this age of Quarantine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊星星发布了新的文献求助10
1秒前
123完成签到,获得积分10
1秒前
似水流年完成签到,获得积分20
1秒前
1秒前
小不溜发布了新的文献求助10
2秒前
共享精神应助虚幻的彤采纳,获得10
2秒前
3秒前
4秒前
6秒前
6秒前
SHYSHYLONG发布了新的文献求助10
6秒前
浮游应助科研通管家采纳,获得10
7秒前
xxfsx应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
无极微光应助科研通管家采纳,获得20
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
十三应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得30
8秒前
ccm应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
9秒前
Huang完成签到 ,获得积分0
9秒前
9秒前
yxr应助小石采纳,获得10
10秒前
韩jl完成签到,获得积分10
12秒前
12秒前
刁弘睿完成签到 ,获得积分10
13秒前
13秒前
韩jl发布了新的文献求助10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288471
求助须知:如何正确求助?哪些是违规求助? 4440345
关于积分的说明 13824326
捐赠科研通 4322585
什么是DOI,文献DOI怎么找? 2372663
邀请新用户注册赠送积分活动 1368105
关于科研通互助平台的介绍 1331949