InstaCovNet-19: A deep learning classification model for the detection of COVID-19 patients using Chest X-ray

2019年冠状病毒病(COVID-19) 人工智能 计算机科学 精确性和召回率 肺炎 召回 深度学习 二元分类 卷积神经网络 班级(哲学) F1得分 医学 机器学习 疾病 病理 内科学 支持向量机 心理学 传染病(医学专业) 认知心理学
作者
Anunay Gupta,Anjum Ansari,Shreyansh Gupta,Rahul Katarya
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:99: 106859-106859 被引量:201
标识
DOI:10.1016/j.asoc.2020.106859
摘要

Recently, the whole world became infected by the newly discovered coronavirus (COVID-19). SARS-CoV-2, or widely known as COVID-19, has proved to be a hazardous virus severely affecting the health of people. It causes respiratory illness, especially in people who already suffer from other diseases. Limited availability of test kits as well as symptoms similar to other diseases such as pneumonia has made this disease deadly, claiming the lives of millions of people. Artificial intelligence models are found to be very successful in the diagnosis of various diseases in the biomedical field In this paper, an integrated stacked deep convolution network InstaCovNet-19 is proposed. The proposed model makes use of various pre-trained models such as ResNet101, Xception, InceptionV3, MobileNet, and NASNet to compensate for a relatively small amount of training data. The proposed model detects COVID-19 and pneumonia by identifying the abnormalities caused by such diseases in Chest X-ray images of the person infected. The proposed model achieves an accuracy of 99.08% on 3 class (COVID-19, Pneumonia, Normal) classification while achieving an accuracy of 99.53% on 2 class (COVID, NON-COVID) classification. The proposed model achieves an average recall, F1 score, and precision of 99%, 99%, and 99%, respectively on ternary classification, while achieving a 100% precision and a recall of 99% on the binary class., while achieving a 100% precision and a recall of 99% on the COVID class. InstaCovNet-19's ability to detect COVID-19 without any human intervention at an economical cost with high accuracy can benefit humankind greatly in this age of Quarantine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jingyu应助我爱科研采纳,获得20
1秒前
淡然老太发布了新的文献求助10
2秒前
2秒前
领导范儿应助川儿采纳,获得10
3秒前
3秒前
科研通AI2S应助粉煤灰采纳,获得10
4秒前
锦鲤禾发布了新的文献求助10
4秒前
5秒前
科目三应助曦曦呵呵采纳,获得10
5秒前
7秒前
8秒前
8秒前
神光发布了新的文献求助10
8秒前
艾绒完成签到,获得积分10
8秒前
上官若男应助知足且上进采纳,获得10
9秒前
建设完成签到,获得积分10
9秒前
xx发布了新的文献求助10
9秒前
温柔的中蓝完成签到,获得积分10
9秒前
9秒前
研友_8oYPrn完成签到,获得积分10
10秒前
10秒前
322628完成签到,获得积分10
11秒前
11秒前
11秒前
英姑应助lu采纳,获得10
12秒前
snowpaper发布了新的文献求助30
13秒前
帆帆帆发布了新的文献求助10
13秒前
llnysl完成签到 ,获得积分10
15秒前
soar发布了新的文献求助10
16秒前
丘比特应助美好的问枫采纳,获得10
16秒前
开朗的学姐完成签到,获得积分10
16秒前
bkagyin应助xiaowang采纳,获得10
17秒前
19秒前
风中乘风完成签到,获得积分20
19秒前
19秒前
20秒前
summer大魔王完成签到,获得积分10
20秒前
20秒前
Phoebe Li发布了新的文献求助10
20秒前
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148786
求助须知:如何正确求助?哪些是违规求助? 2799787
关于积分的说明 7837076
捐赠科研通 2457292
什么是DOI,文献DOI怎么找? 1307821
科研通“疑难数据库(出版商)”最低求助积分说明 628276
版权声明 601663