InstaCovNet-19: A deep learning classification model for the detection of COVID-19 patients using Chest X-ray

2019年冠状病毒病(COVID-19) 人工智能 计算机科学 精确性和召回率 肺炎 召回 深度学习 二元分类 卷积神经网络 班级(哲学) F1得分 医学 机器学习 疾病 病理 内科学 支持向量机 心理学 传染病(医学专业) 认知心理学
作者
Anunay Gupta,Anjum Ansari,Shreyansh Gupta,Rahul Katarya
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:99: 106859-106859 被引量:201
标识
DOI:10.1016/j.asoc.2020.106859
摘要

Recently, the whole world became infected by the newly discovered coronavirus (COVID-19). SARS-CoV-2, or widely known as COVID-19, has proved to be a hazardous virus severely affecting the health of people. It causes respiratory illness, especially in people who already suffer from other diseases. Limited availability of test kits as well as symptoms similar to other diseases such as pneumonia has made this disease deadly, claiming the lives of millions of people. Artificial intelligence models are found to be very successful in the diagnosis of various diseases in the biomedical field In this paper, an integrated stacked deep convolution network InstaCovNet-19 is proposed. The proposed model makes use of various pre-trained models such as ResNet101, Xception, InceptionV3, MobileNet, and NASNet to compensate for a relatively small amount of training data. The proposed model detects COVID-19 and pneumonia by identifying the abnormalities caused by such diseases in Chest X-ray images of the person infected. The proposed model achieves an accuracy of 99.08% on 3 class (COVID-19, Pneumonia, Normal) classification while achieving an accuracy of 99.53% on 2 class (COVID, NON-COVID) classification. The proposed model achieves an average recall, F1 score, and precision of 99%, 99%, and 99%, respectively on ternary classification, while achieving a 100% precision and a recall of 99% on the binary class., while achieving a 100% precision and a recall of 99% on the COVID class. InstaCovNet-19's ability to detect COVID-19 without any human intervention at an economical cost with high accuracy can benefit humankind greatly in this age of Quarantine.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助111采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
Charlene发布了新的文献求助10
5秒前
SS完成签到,获得积分10
5秒前
JoJo完成签到,获得积分10
6秒前
一去发布了新的文献求助10
7秒前
9秒前
sqlin完成签到 ,获得积分10
11秒前
悦耳月光完成签到,获得积分10
12秒前
12秒前
wanci应助宫立辉采纳,获得10
14秒前
GAW完成签到,获得积分10
14秒前
14秒前
坚定岂愈发布了新的文献求助10
15秒前
15秒前
风中松鼠应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
风中松鼠应助科研通管家采纳,获得10
15秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
蒹葭苍苍应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
16秒前
蒹葭苍苍应助科研通管家采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
16秒前
风中松鼠应助科研通管家采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
蒹葭苍苍应助科研通管家采纳,获得10
16秒前
风中松鼠应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
蒹葭苍苍应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774957
求助须知:如何正确求助?哪些是违规求助? 5620753
关于积分的说明 15437173
捐赠科研通 4907368
什么是DOI,文献DOI怎么找? 2640630
邀请新用户注册赠送积分活动 1588544
关于科研通互助平台的介绍 1543412