Machine learning assisted materials design and discovery for rechargeable batteries

电池(电) 机器学习 人工智能 过程(计算) 特征选择 财产(哲学) 组分(热力学) 计算机科学 功率(物理) 量子力学 热力学 认识论 操作系统 物理 哲学
作者
Siqi Shi,Biru Guo,Xinxin Zou,Yajie Li,Siqi Shi
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:31: 434-450 被引量:267
标识
DOI:10.1016/j.ensm.2020.06.033
摘要

Machine learning plays an important role in accelerating the discovery and design process for novel electrochemical energy storage materials. This review aims to provide the state-of-the-art and prospects of machine learning for the design of rechargeable battery materials. After illustrating the key concepts of machine learning and basic procedures for applying machine learning in rechargeable battery materials science, we focus on how to obtain the most important features from the specific physical, chemical and/or other properties of material by using wrapper feature selection method, embedded feature selection method, and the combination of these two methods. And then, the applications of machine learning in rechargeable battery materials design and discovery are reviewed, including the property prediction for liquid electrolytes, solid electrolytes, electrode materials, and the discovery of novel rechargeable battery materials through component prediction and structure prediction. More importantly, we discuss the key challenges related to machine learning in rechargeable battery materials science, including the contradiction between high dimension and small sample, the conflict between the complexity and accuracy of machine learning models, and the inconsistency between learning results and domain expert knowledge. In response to these challenges, we propose possible countermeasures and forecast potential directions of future research. This review is expected to shed light on machine learning in rechargeable battery materials design and property optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
风中的双完成签到,获得积分10
1秒前
Roche完成签到,获得积分10
1秒前
1秒前
和尘同光发布了新的文献求助10
2秒前
科研通AI2S应助zxvcbnm采纳,获得10
2秒前
凝望那片海2020完成签到,获得积分10
2秒前
2秒前
De.完成签到 ,获得积分10
3秒前
聪慧百合完成签到,获得积分10
3秒前
3秒前
梁三岁完成签到,获得积分10
3秒前
3秒前
SYanan发布了新的文献求助10
4秒前
小柒完成签到,获得积分10
4秒前
英姑应助景笑天采纳,获得10
4秒前
自强不息完成签到,获得积分10
5秒前
Young完成签到,获得积分10
5秒前
石幻枫完成签到 ,获得积分10
5秒前
萧水白发布了新的文献求助100
5秒前
6秒前
6秒前
zhang完成签到,获得积分10
7秒前
pwy完成签到,获得积分10
8秒前
风中的双发布了新的文献求助30
8秒前
8秒前
wallacetan完成签到,获得积分10
8秒前
打打应助特洛伊采纳,获得10
8秒前
9秒前
xuaotian完成签到,获得积分10
9秒前
天天快乐应助ZZzz采纳,获得10
10秒前
cckyt完成签到,获得积分10
10秒前
乐观的绮山完成签到,获得积分10
11秒前
大模型应助龚幻梦采纳,获得10
12秒前
111完成签到,获得积分10
12秒前
925完成签到,获得积分10
12秒前
bluefire完成签到,获得积分10
13秒前
roselau完成签到,获得积分10
13秒前
Keming完成签到,获得积分10
14秒前
沸羊羊完成签到,获得积分10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150871
求助须知:如何正确求助?哪些是违规求助? 2802403
关于积分的说明 7847692
捐赠科研通 2459732
什么是DOI,文献DOI怎么找? 1309322
科研通“疑难数据库(出版商)”最低求助积分说明 628884
版权声明 601757