Machine learning assisted materials design and discovery for rechargeable batteries

电池(电) 机器学习 人工智能 过程(计算) 特征选择 财产(哲学) 组分(热力学) 计算机科学 功率(物理) 量子力学 热力学 认识论 操作系统 物理 哲学
作者
Yue Liu,Biru Guo,Xinxin Zou,Yajie Li,Siqi Shi
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:31: 434-450 被引量:317
标识
DOI:10.1016/j.ensm.2020.06.033
摘要

Machine learning plays an important role in accelerating the discovery and design process for novel electrochemical energy storage materials. This review aims to provide the state-of-the-art and prospects of machine learning for the design of rechargeable battery materials. After illustrating the key concepts of machine learning and basic procedures for applying machine learning in rechargeable battery materials science, we focus on how to obtain the most important features from the specific physical, chemical and/or other properties of material by using wrapper feature selection method, embedded feature selection method, and the combination of these two methods. And then, the applications of machine learning in rechargeable battery materials design and discovery are reviewed, including the property prediction for liquid electrolytes, solid electrolytes, electrode materials, and the discovery of novel rechargeable battery materials through component prediction and structure prediction. More importantly, we discuss the key challenges related to machine learning in rechargeable battery materials science, including the contradiction between high dimension and small sample, the conflict between the complexity and accuracy of machine learning models, and the inconsistency between learning results and domain expert knowledge. In response to these challenges, we propose possible countermeasures and forecast potential directions of future research. This review is expected to shed light on machine learning in rechargeable battery materials design and property optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
wxxz完成签到,获得积分10
4秒前
威武红酒完成签到 ,获得积分10
4秒前
双碳小王子完成签到,获得积分10
5秒前
www完成签到 ,获得积分10
5秒前
韭菜盒子发布了新的文献求助10
6秒前
SCI完成签到 ,获得积分10
8秒前
keyan完成签到 ,获得积分10
9秒前
格子完成签到,获得积分10
9秒前
hzl完成签到,获得积分10
9秒前
梅花易数完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
chenmeimei2012完成签到 ,获得积分10
12秒前
那时年少完成签到,获得积分10
14秒前
15秒前
feng完成签到,获得积分10
17秒前
19秒前
20秒前
woyaojiayou完成签到,获得积分10
21秒前
儒雅以云完成签到,获得积分10
22秒前
GreenT完成签到,获得积分10
23秒前
X519664508完成签到,获得积分0
23秒前
tangchao完成签到,获得积分10
24秒前
accepted发布了新的文献求助30
24秒前
雪寒完成签到,获得积分10
25秒前
石幻枫完成签到 ,获得积分0
26秒前
28秒前
amber完成签到 ,获得积分10
28秒前
Green完成签到,获得积分10
30秒前
牧青发布了新的文献求助10
31秒前
典雅葶完成签到 ,获得积分10
34秒前
35秒前
淡然以柳完成签到 ,获得积分10
36秒前
39秒前
39秒前
尊敬怀薇完成签到,获得积分10
40秒前
yy完成签到,获得积分10
40秒前
花花完成签到 ,获得积分10
41秒前
慕容杏子完成签到,获得积分10
42秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015670
求助须知:如何正确求助?哪些是违规求助? 3555644
关于积分的说明 11318192
捐赠科研通 3288842
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015