Recent advances of thermal safety of lithium ion battery for energy storage

热失控 材料科学 储能 电池(电) 锂(药物) 锂离子电池 核工程 热力学 工程类 医学 物理 内分泌学 功率(物理)
作者
Peizhao Lyu,Xinjian Liu,Jie Qu,Jiateng Zhao,Yutao Huo,Zhiguo Qu,Zhonghao Rao
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:31: 195-220 被引量:406
标识
DOI:10.1016/j.ensm.2020.06.042
摘要

Lithium ion batteries have been widely used in the power-driven system and energy storage system. While thermal safety for lithium ion battery has been constantly concerned all over the world due to the thermal runaway problems occurred in recent years. Lithium ion battery has high temperature sensitivity and the relatively narrow operating temperature range because of the complex electrochemical reactions at different temperatures. And the temperature change, including the global temperature change in different seasons and the local temperature rise that is induced by its self-heating etc., can trigger side reactions and then lead to thermal runaway, which should be further considered to ensure thermal safety of lithium ion battery. This review summarizes the inducements of thermal runaway and relevant solutions, spanning a wide temperature range. The low temperature induced issues, such as capacity fade and lithium plating and dendrite, can cause internal short circuit (ISC), while as the temperature is above the critical temperature, the speeding of side reactions and reduction of lifespan (T ​> ​40 ​°C) and thermal runaway (T ​> ​90 ​°C) will be triggered. In order to solve the thermal issues in batteries, extensive approaches have been investigated to prevent the occurrence, propagation and deterioration of thermal runaway, from the perspective of material to the battery system. The triggered mechanism at a wide temperature range, key factors for thermal safety and the effective heat dissipation strategies are concluded in this review. This review is expected to offer effective thermal safety strategies and promote the development of lithium ion battery with high-energy density.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李爱国应助晨曦采纳,获得10
1秒前
0128lun发布了新的文献求助10
1秒前
phd发布了新的文献求助10
2秒前
君无名完成签到 ,获得积分10
2秒前
经年发布了新的文献求助10
2秒前
QXR完成签到,获得积分10
3秒前
豆dou完成签到,获得积分10
3秒前
Dddd发布了新的文献求助10
3秒前
HCl完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
6秒前
Hollen完成签到 ,获得积分10
7秒前
慕青应助学术蠕虫采纳,获得10
8秒前
8秒前
叶子发布了新的文献求助10
9秒前
orangel完成签到,获得积分10
10秒前
半壶月色半边天完成签到 ,获得积分10
11秒前
tmpstlml发布了新的文献求助10
11秒前
12秒前
12秒前
不安饼干完成签到 ,获得积分10
14秒前
活泼的飞鸟完成签到,获得积分10
14秒前
15秒前
xuyun发布了新的文献求助10
15秒前
15秒前
zzcres完成签到,获得积分10
17秒前
eeeee完成签到 ,获得积分10
17秒前
乐观德地完成签到,获得积分10
18秒前
大个应助yf_zhu采纳,获得10
18秒前
llk发布了新的文献求助10
19秒前
一只大肥猫完成签到,获得积分10
19秒前
19秒前
21秒前
21秒前
21秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808