Fusion of Brain PET and MRI Images Using Tissue-Aware Conditional Generative Adversarial Network With Joint Loss

鉴别器 计算机科学 人工智能 计算机视觉 图像融合 磁共振成像 生成对抗网络 正电子发射断层摄影术 发电机(电路理论) 模式识别(心理学) 基本事实 脑组织 图像分辨率 图像(数学) 生物医学工程 核医学 医学 放射科 物理 电信 功率(物理) 量子力学 探测器
作者
Jiayin Kang,Wu Lu,Wenjuan Zhang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 6368-6378 被引量:22
标识
DOI:10.1109/access.2019.2963741
摘要

Positron emission tomography (PET) has rich pseudo color information that reflects the functional characteristics of tissue, but lacks structural information and its spatial resolution is low. Magnetic resonance imaging (MRI) has high spatial resolution as well as strong structural information of soft tissue, but lacks color information that shows the functional characteristics of tissue. For the purpose of integrating the color information of PET with the anatomical structures of MRI to help doctors diagnose diseases better, a method for fusing brain PET and MRI images using tissue-aware conditional generative adversarial network (TA-cGAN) is proposed. Specifically, the process of fusing brain PET and MRI images is treated as an adversarial machine between retaining the color information of PET and preserving the anatomical information of MRI. More specifically, the fusion of PET and MRI images can be regarded as a min-max optimization problem with respect to the generator and the discriminator, where the generator attempts to minimize the objective function via generating a fused image mainly contains the color information of PET, whereas the discriminator tries to maximize the objective function through urging the fused image to include more structural information of MRI. Both the generator and the discriminator in TA-cGAN are conditioned on the tissue label map generated from MRI image, and are trained alternatively with joint loss. Extensive experiments demonstrate that the proposed method enhances the anatomical details of the fused image while effectively preserving the color information from the PET. In addition, compared with other state-of-the-art methods, the proposed method achieves better fusion effects both in subjectively visual perception and in objectively quantitative assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
你好呀嘻嘻完成签到 ,获得积分10
1秒前
1秒前
南风应助Espionage采纳,获得10
2秒前
2秒前
蓝色完成签到,获得积分20
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
勤劳影子完成签到,获得积分10
4秒前
HaishanGuan发布了新的文献求助10
7秒前
蓝色发布了新的文献求助10
7秒前
DQ2pi完成签到 ,获得积分10
8秒前
丘比特应助zjxhjj123采纳,获得10
9秒前
10秒前
13秒前
小鱼完成签到,获得积分10
14秒前
17秒前
ahsisalah发布了新的文献求助10
17秒前
搜集达人应助luyuran采纳,获得10
18秒前
西门发发完成签到,获得积分10
18秒前
18秒前
Mandyan发布了新的文献求助10
20秒前
还单身的电灯胆完成签到,获得积分20
21秒前
西门发发发布了新的文献求助10
22秒前
FancyShi发布了新的文献求助10
23秒前
天天快乐应助科研通管家采纳,获得50
23秒前
morena应助科研通管家采纳,获得10
23秒前
orixero应助科研通管家采纳,获得10
23秒前
谨慎冷松发布了新的文献求助10
25秒前
LEOhard完成签到,获得积分10
27秒前
安详乌冬面完成签到,获得积分10
30秒前
一碘碘Q完成签到,获得积分10
31秒前
ding应助LEOhard采纳,获得10
31秒前
李博士发布了新的文献求助10
33秒前
33秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3392486
求助须知:如何正确求助?哪些是违规求助? 3003128
关于积分的说明 8807599
捐赠科研通 2689833
什么是DOI,文献DOI怎么找? 1473328
科研通“疑难数据库(出版商)”最低求助积分说明 681547
邀请新用户注册赠送积分活动 674351