钙钛矿(结构)
材料科学
带隙
光伏
能量转换效率
薄膜
光电子学
钙钛矿太阳能电池
太阳能电池
串联
制作
纳米技术
光伏系统
化学工程
复合材料
电气工程
替代医学
病理
工程类
医学
作者
Bahram Abdollahi Nejand,Ihteaz M. Hossain,Marius Jakoby,Somayeh Moghadamzadeh,Tobias Abzieher,Saba Gharibzadeh,Jonas A. Schwenzer,Pariya Nazari,Fabian Schackmar,Dirk Hauschild,L. Weinhardt,Uli Lemmer,Bryce S. Richards,Ian A. Howard,Ulrich W. Paetzold
标识
DOI:10.1002/aenm.201902583
摘要
Abstract All‐perovskite multijunction photovoltaics, combining a wide‐bandgap (WBG) perovskite top solar cell ( E G ≈1.6–1.8 eV) with a low‐bandgap (LBG) perovskite bottom solar cell ( E G < 1.3 eV), promise power conversion efficiencies (PCEs) >33%. While the research on WBG perovskite solar cells has advanced rapidly over the past decade, LBG perovskite solar cells lack PCE as well as stability. In this work, vacuum‐assisted growth control (VAGC) of solution‐processed LBG perovskite thin films based on mixed Sn–Pb perovskite compositions is reported. The reported perovskite thin films processed by VAGC exhibit large columnar crystals. Compared to the well‐established processing of LBG perovskites via antisolvent deposition, the VAGC approach results in a significantly enhanced charge‐carrier lifetime. The improved optoelectronic characteristics enable high‐performance LBG perovskite solar cells (1.27 eV) with PCEs up to 18.2% as well as very efficient four‐terminal all‐perovskite tandem solar cells with PCEs up to 23%. Moreover, VAGC leads to promising reproducibility and potential in the fabrication of larger active‐area solar cells up to 1 cm 2 .
科研通智能强力驱动
Strongly Powered by AbleSci AI