Deep learning using preoperative magnetic resonance imaging information to predict early recovery of urinary continence after robot‐assisted radical prostatectomy

前列腺切除术 医学 磁共振成像 接收机工作特性 尿失禁 深度学习 泌尿科 人工智能 前列腺癌 放射科 癌症 计算机科学 内科学
作者
Makoto Sumitomo,Akira Teramoto,Ryo Toda,Naohiko Fukami,Kosuke Fukaya,Kenji Zennami,Masatsugu Ichino,Kiyoshi Takahara,Mamoru Kusaka,Ryoichi Shiroki
出处
期刊:International Journal of Urology [Wiley]
卷期号:27 (10): 922-928 被引量:9
标识
DOI:10.1111/iju.14325
摘要

Objectives To investigate whether a deep learning model from magnetic resonance imaging information is an accurate method to predict the risk of urinary incontinence after robot‐assisted radical prostatectomy. Methods This study included 400 patients with prostate cancer who underwent robot‐assisted radical prostatectomy. Patients using 0 or 1 pad/day within 3 months after robot‐assisted radical prostatectomy were categorized into the “good” group, whereas the other patients were categorized into the “bad” group. Magnetic resonance imaging DICOM data, and preoperative and intraoperative covariates were assessed. To evaluate the deep learning models from the testing dataset, their sensitivity, specificity and area under the receiver operating characteristic curve were analyzed. Gradient‐weighted class activation mapping was used to visualize the regions of deep learning interest. Results The combination of deep learning and naive Bayes algorithm using axial magnetic resonance imaging in addition to clinicopathological parameters had the highest performance, with an area under the receiver operating characteristic curve of 77.5% for predicting early recovery from post‐prostatectomy urinary incontinence, whereas machine learning using clinicopathological parameters only achieved low performance, with an area under the receiver operating characteristic curve of 62.2%. The gradient‐weighted class activation mapping methods showed that deep learning focused on pelvic skeletal muscles in patients in the good group, and on the perirectal and hip joint regions in patients in the bad group. Conclusions Our results suggest that deep learning using magnetic resonance imaging is useful for predicting the severity of urinary incontinence after robot‐assisted radical prostatectomy. Deep learning algorithms might help in the choice of treatment strategy, especially for prostate cancer patients who wish to avoid prolonged urinary incontinence after robot‐assisted radical prostatectomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
饭团完成签到 ,获得积分20
1秒前
rex完成签到,获得积分10
1秒前
quCC完成签到,获得积分10
2秒前
安详的松思完成签到,获得积分10
2秒前
zqr完成签到,获得积分10
2秒前
wwwww发布了新的文献求助10
2秒前
2秒前
大可不必应助李伍各采纳,获得10
3秒前
木木完成签到,获得积分10
4秒前
jojo发布了新的文献求助10
5秒前
5秒前
6秒前
April发布了新的文献求助10
6秒前
星冉完成签到,获得积分10
7秒前
7秒前
8秒前
牛肉丸成精了完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
tht发布了新的文献求助10
10秒前
Xiu给qiii的求助进行了留言
10秒前
LUNE完成签到 ,获得积分10
10秒前
AS123完成签到,获得积分10
11秒前
petrichor完成签到 ,获得积分10
11秒前
田様应助顾君如采纳,获得10
11秒前
把握有度完成签到,获得积分10
11秒前
zzyh完成签到,获得积分10
12秒前
GLv发布了新的文献求助10
12秒前
危机的煎蛋完成签到 ,获得积分10
12秒前
笨小孩完成签到,获得积分10
13秒前
13秒前
13秒前
苍蓝所栖完成签到,获得积分10
13秒前
14秒前
小底完成签到,获得积分10
15秒前
aabbcc完成签到 ,获得积分10
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490563
求助须知:如何正确求助?哪些是违规求助? 4589061
关于积分的说明 14423410
捐赠科研通 4521097
什么是DOI,文献DOI怎么找? 2477169
邀请新用户注册赠送积分活动 1462514
关于科研通互助平台的介绍 1435329