Deep learning using preoperative magnetic resonance imaging information to predict early recovery of urinary continence after robot‐assisted radical prostatectomy

前列腺切除术 医学 磁共振成像 接收机工作特性 尿失禁 深度学习 泌尿科 人工智能 前列腺癌 放射科 癌症 计算机科学 内科学
作者
Makoto Sumitomo,Akira Teramoto,Ryo Toda,Naohiko Fukami,Kosuke Fukaya,Kenji Zennami,Masatsugu Ichino,Kiyoshi Takahara,Mamoru Kusaka,Ryoichi Shiroki
出处
期刊:International Journal of Urology [Wiley]
卷期号:27 (10): 922-928 被引量:9
标识
DOI:10.1111/iju.14325
摘要

Objectives To investigate whether a deep learning model from magnetic resonance imaging information is an accurate method to predict the risk of urinary incontinence after robot‐assisted radical prostatectomy. Methods This study included 400 patients with prostate cancer who underwent robot‐assisted radical prostatectomy. Patients using 0 or 1 pad/day within 3 months after robot‐assisted radical prostatectomy were categorized into the “good” group, whereas the other patients were categorized into the “bad” group. Magnetic resonance imaging DICOM data, and preoperative and intraoperative covariates were assessed. To evaluate the deep learning models from the testing dataset, their sensitivity, specificity and area under the receiver operating characteristic curve were analyzed. Gradient‐weighted class activation mapping was used to visualize the regions of deep learning interest. Results The combination of deep learning and naive Bayes algorithm using axial magnetic resonance imaging in addition to clinicopathological parameters had the highest performance, with an area under the receiver operating characteristic curve of 77.5% for predicting early recovery from post‐prostatectomy urinary incontinence, whereas machine learning using clinicopathological parameters only achieved low performance, with an area under the receiver operating characteristic curve of 62.2%. The gradient‐weighted class activation mapping methods showed that deep learning focused on pelvic skeletal muscles in patients in the good group, and on the perirectal and hip joint regions in patients in the bad group. Conclusions Our results suggest that deep learning using magnetic resonance imaging is useful for predicting the severity of urinary incontinence after robot‐assisted radical prostatectomy. Deep learning algorithms might help in the choice of treatment strategy, especially for prostate cancer patients who wish to avoid prolonged urinary incontinence after robot‐assisted radical prostatectomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳的炼金师完成签到,获得积分10
刚刚
李白完成签到,获得积分10
刚刚
梦想发布了新的文献求助50
刚刚
刚刚
冷空气发布了新的文献求助10
刚刚
1秒前
zzx完成签到 ,获得积分20
1秒前
爆米花应助星星的梦采纳,获得10
1秒前
李健的粉丝团团长应助yhh采纳,获得10
1秒前
任ren完成签到,获得积分20
2秒前
画风湖湘卷完成签到 ,获得积分10
3秒前
dd发布了新的文献求助10
3秒前
4秒前
4秒前
lyyyy发布了新的文献求助10
4秒前
浮游应助有魅力的寄琴采纳,获得10
4秒前
CASLSD完成签到 ,获得积分10
4秒前
Karlie完成签到,获得积分10
5秒前
天天快乐应助一区哥采纳,获得10
6秒前
搜集达人应助顾年采纳,获得10
6秒前
屈屈完成签到,获得积分10
7秒前
zyb完成签到,获得积分10
7秒前
XIAJIN完成签到,获得积分10
7秒前
领导范儿应助阳阳采纳,获得10
7秒前
你坤叔公发布了新的文献求助10
8秒前
8秒前
渡月桥完成签到,获得积分10
9秒前
情怀应助ZhouYW采纳,获得10
9秒前
9秒前
李爱国应助宓珧采纳,获得10
9秒前
10秒前
ZZZ发布了新的文献求助10
11秒前
Zzz关注了科研通微信公众号
11秒前
11秒前
范琴琴完成签到,获得积分10
12秒前
12秒前
12秒前
酷波er应助1043681559采纳,获得10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193830
求助须知:如何正确求助?哪些是违规求助? 4376175
关于积分的说明 13628611
捐赠科研通 4231092
什么是DOI,文献DOI怎么找? 2320710
邀请新用户注册赠送积分活动 1319080
关于科研通互助平台的介绍 1269416