已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning using preoperative magnetic resonance imaging information to predict early recovery of urinary continence after robot‐assisted radical prostatectomy

前列腺切除术 医学 磁共振成像 接收机工作特性 尿失禁 深度学习 泌尿科 人工智能 前列腺癌 放射科 癌症 计算机科学 内科学
作者
Makoto Sumitomo,Akira Teramoto,Ryo Toda,Naohiko Fukami,Kosuke Fukaya,Kenji Zennami,Masatsugu Ichino,Kiyoshi Takahara,Mamoru Kusaka,Ryoichi Shiroki
出处
期刊:International Journal of Urology [Wiley]
卷期号:27 (10): 922-928 被引量:9
标识
DOI:10.1111/iju.14325
摘要

Objectives To investigate whether a deep learning model from magnetic resonance imaging information is an accurate method to predict the risk of urinary incontinence after robot‐assisted radical prostatectomy. Methods This study included 400 patients with prostate cancer who underwent robot‐assisted radical prostatectomy. Patients using 0 or 1 pad/day within 3 months after robot‐assisted radical prostatectomy were categorized into the “good” group, whereas the other patients were categorized into the “bad” group. Magnetic resonance imaging DICOM data, and preoperative and intraoperative covariates were assessed. To evaluate the deep learning models from the testing dataset, their sensitivity, specificity and area under the receiver operating characteristic curve were analyzed. Gradient‐weighted class activation mapping was used to visualize the regions of deep learning interest. Results The combination of deep learning and naive Bayes algorithm using axial magnetic resonance imaging in addition to clinicopathological parameters had the highest performance, with an area under the receiver operating characteristic curve of 77.5% for predicting early recovery from post‐prostatectomy urinary incontinence, whereas machine learning using clinicopathological parameters only achieved low performance, with an area under the receiver operating characteristic curve of 62.2%. The gradient‐weighted class activation mapping methods showed that deep learning focused on pelvic skeletal muscles in patients in the good group, and on the perirectal and hip joint regions in patients in the bad group. Conclusions Our results suggest that deep learning using magnetic resonance imaging is useful for predicting the severity of urinary incontinence after robot‐assisted radical prostatectomy. Deep learning algorithms might help in the choice of treatment strategy, especially for prostate cancer patients who wish to avoid prolonged urinary incontinence after robot‐assisted radical prostatectomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宁燕完成签到,获得积分10
1秒前
2秒前
星辰大海应助lrh采纳,获得10
5秒前
Feng5945发布了新的文献求助10
5秒前
sirf完成签到 ,获得积分10
6秒前
7秒前
8秒前
英俊的铭应助22222采纳,获得10
8秒前
lin.xy完成签到,获得积分10
9秒前
Zz发布了新的文献求助10
13秒前
宁燕发布了新的文献求助10
13秒前
drrobins发布了新的文献求助10
15秒前
15秒前
火星上的山河完成签到 ,获得积分10
15秒前
周诗琪完成签到 ,获得积分10
16秒前
六五完成签到 ,获得积分10
16秒前
19秒前
20秒前
遇上就这样吧应助drrobins采纳,获得10
22秒前
22222发布了新的文献求助10
23秒前
24秒前
Zz完成签到,获得积分10
28秒前
Tayzon完成签到,获得积分10
29秒前
苟子发布了新的文献求助10
30秒前
结实小蜜蜂完成签到,获得积分20
31秒前
00完成签到 ,获得积分10
35秒前
瑞瑞刘完成签到 ,获得积分10
37秒前
小森关注了科研通微信公众号
42秒前
Ava应助结实小蜜蜂采纳,获得10
42秒前
南与晚霞发布了新的文献求助10
42秒前
Hu完成签到,获得积分10
48秒前
mengchen完成签到,获得积分10
49秒前
鸣蜩十三完成签到,获得积分10
49秒前
wang5945完成签到 ,获得积分10
51秒前
NexusExplorer应助苟子采纳,获得10
52秒前
情怀应助mengchen采纳,获得30
54秒前
柚子完成签到 ,获得积分10
58秒前
谨慎秋珊完成签到 ,获得积分10
59秒前
稳重岩完成签到 ,获得积分10
1分钟前
岸上牛完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4539559
求助须知:如何正确求助?哪些是违规求助? 3973721
关于积分的说明 12309443
捐赠科研通 3640672
什么是DOI,文献DOI怎么找? 2004626
邀请新用户注册赠送积分活动 1040073
科研通“疑难数据库(出版商)”最低求助积分说明 929197