Deep learning using preoperative magnetic resonance imaging information to predict early recovery of urinary continence after robot‐assisted radical prostatectomy

前列腺切除术 医学 磁共振成像 接收机工作特性 尿失禁 深度学习 泌尿科 人工智能 前列腺癌 放射科 癌症 计算机科学 内科学
作者
Makoto Sumitomo,Akira Teramoto,Ryo Toda,Naohiko Fukami,Kosuke Fukaya,Kenji Zennami,Masatsugu Ichino,Kiyoshi Takahara,Mamoru Kusaka,Ryoichi Shiroki
出处
期刊:International Journal of Urology [Wiley]
卷期号:27 (10): 922-928 被引量:9
标识
DOI:10.1111/iju.14325
摘要

Objectives To investigate whether a deep learning model from magnetic resonance imaging information is an accurate method to predict the risk of urinary incontinence after robot‐assisted radical prostatectomy. Methods This study included 400 patients with prostate cancer who underwent robot‐assisted radical prostatectomy. Patients using 0 or 1 pad/day within 3 months after robot‐assisted radical prostatectomy were categorized into the “good” group, whereas the other patients were categorized into the “bad” group. Magnetic resonance imaging DICOM data, and preoperative and intraoperative covariates were assessed. To evaluate the deep learning models from the testing dataset, their sensitivity, specificity and area under the receiver operating characteristic curve were analyzed. Gradient‐weighted class activation mapping was used to visualize the regions of deep learning interest. Results The combination of deep learning and naive Bayes algorithm using axial magnetic resonance imaging in addition to clinicopathological parameters had the highest performance, with an area under the receiver operating characteristic curve of 77.5% for predicting early recovery from post‐prostatectomy urinary incontinence, whereas machine learning using clinicopathological parameters only achieved low performance, with an area under the receiver operating characteristic curve of 62.2%. The gradient‐weighted class activation mapping methods showed that deep learning focused on pelvic skeletal muscles in patients in the good group, and on the perirectal and hip joint regions in patients in the bad group. Conclusions Our results suggest that deep learning using magnetic resonance imaging is useful for predicting the severity of urinary incontinence after robot‐assisted radical prostatectomy. Deep learning algorithms might help in the choice of treatment strategy, especially for prostate cancer patients who wish to avoid prolonged urinary incontinence after robot‐assisted radical prostatectomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三分发布了新的文献求助30
刚刚
奋斗发布了新的文献求助10
刚刚
麦冬冬发布了新的文献求助10
1秒前
师旖旎完成签到,获得积分10
1秒前
555驳回了Alex应助
1秒前
搬砖feng发布了新的文献求助10
1秒前
1秒前
2秒前
李奥发布了新的文献求助10
2秒前
2秒前
失眠的剑发布了新的文献求助10
2秒前
3秒前
3秒前
脑洞疼应助yahaha采纳,获得10
3秒前
支支发布了新的文献求助10
4秒前
汉堡包应助科研通管家采纳,获得30
5秒前
Orange应助科研通管家采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
木木应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
zhl发布了新的文献求助10
6秒前
6秒前
爆米花应助钩子89采纳,获得10
6秒前
李洪兵发布了新的文献求助10
6秒前
7秒前
moralz发布了新的文献求助10
7秒前
7秒前
清爽秋白发布了新的文献求助10
9秒前
不是省油的灯完成签到 ,获得积分10
9秒前
青青草发布了新的文献求助10
9秒前
机灵小馒头完成签到,获得积分10
9秒前
xiaozhang发布了新的文献求助10
10秒前
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009979
求助须知:如何正确求助?哪些是违规求助? 3550041
关于积分的说明 11304472
捐赠科研通 3284482
什么是DOI,文献DOI怎么找? 1810684
邀请新用户注册赠送积分活动 886503
科研通“疑难数据库(出版商)”最低求助积分说明 811412