Deep learning using preoperative magnetic resonance imaging information to predict early recovery of urinary continence after robot‐assisted radical prostatectomy

前列腺切除术 医学 磁共振成像 接收机工作特性 尿失禁 深度学习 泌尿科 人工智能 前列腺癌 放射科 癌症 计算机科学 内科学
作者
Makoto Sumitomo,Akira Teramoto,Ryo Toda,Naohiko Fukami,Kosuke Fukaya,Kenji Zennami,Masatsugu Ichino,Kiyoshi Takahara,Mamoru Kusaka,Ryoichi Shiroki
出处
期刊:International Journal of Urology [Wiley]
卷期号:27 (10): 922-928 被引量:9
标识
DOI:10.1111/iju.14325
摘要

Objectives To investigate whether a deep learning model from magnetic resonance imaging information is an accurate method to predict the risk of urinary incontinence after robot‐assisted radical prostatectomy. Methods This study included 400 patients with prostate cancer who underwent robot‐assisted radical prostatectomy. Patients using 0 or 1 pad/day within 3 months after robot‐assisted radical prostatectomy were categorized into the “good” group, whereas the other patients were categorized into the “bad” group. Magnetic resonance imaging DICOM data, and preoperative and intraoperative covariates were assessed. To evaluate the deep learning models from the testing dataset, their sensitivity, specificity and area under the receiver operating characteristic curve were analyzed. Gradient‐weighted class activation mapping was used to visualize the regions of deep learning interest. Results The combination of deep learning and naive Bayes algorithm using axial magnetic resonance imaging in addition to clinicopathological parameters had the highest performance, with an area under the receiver operating characteristic curve of 77.5% for predicting early recovery from post‐prostatectomy urinary incontinence, whereas machine learning using clinicopathological parameters only achieved low performance, with an area under the receiver operating characteristic curve of 62.2%. The gradient‐weighted class activation mapping methods showed that deep learning focused on pelvic skeletal muscles in patients in the good group, and on the perirectal and hip joint regions in patients in the bad group. Conclusions Our results suggest that deep learning using magnetic resonance imaging is useful for predicting the severity of urinary incontinence after robot‐assisted radical prostatectomy. Deep learning algorithms might help in the choice of treatment strategy, especially for prostate cancer patients who wish to avoid prolonged urinary incontinence after robot‐assisted radical prostatectomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
精明秋完成签到,获得积分10
4秒前
5秒前
wsl完成签到 ,获得积分10
6秒前
A12138完成签到 ,获得积分10
8秒前
KK完成签到,获得积分10
9秒前
viola0827发布了新的文献求助10
9秒前
oxs完成签到 ,获得积分10
11秒前
liuhongcan完成签到,获得积分10
13秒前
梓泽丘墟完成签到,获得积分10
16秒前
哈哈哈哈完成签到 ,获得积分10
17秒前
简单的银耳汤完成签到,获得积分10
18秒前
凌露完成签到 ,获得积分10
18秒前
虚幻的冰露完成签到 ,获得积分10
18秒前
感动清炎完成签到,获得积分10
18秒前
一个美女完成签到,获得积分10
19秒前
优雅莞完成签到,获得积分10
19秒前
20秒前
LOVER完成签到 ,获得积分10
24秒前
电闪完成签到,获得积分10
31秒前
MXX完成签到,获得积分10
31秒前
yuan完成签到,获得积分10
34秒前
Ashley完成签到 ,获得积分10
34秒前
乐天完成签到,获得积分10
36秒前
wangeil007完成签到,获得积分10
39秒前
Grace159完成签到 ,获得积分10
41秒前
服部平次完成签到,获得积分10
44秒前
牛奶面包完成签到 ,获得积分10
46秒前
Loooong应助科研通管家采纳,获得10
47秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
搜集达人应助科研通管家采纳,获得10
47秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
Loooong应助科研通管家采纳,获得10
47秒前
服部平次发布了新的文献求助10
51秒前
啦啦啦啦啦啦完成签到 ,获得积分10
51秒前
yzxzdm完成签到 ,获得积分10
54秒前
一二完成签到 ,获得积分10
57秒前
Novice6354完成签到 ,获得积分10
1分钟前
xiaxia42完成签到 ,获得积分10
1分钟前
爱静静应助Robin采纳,获得10
1分钟前
一篇吃不饱完成签到,获得积分10
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162398
求助须知:如何正确求助?哪些是违规求助? 2813350
关于积分的说明 7899906
捐赠科研通 2472894
什么是DOI,文献DOI怎么找? 1316556
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602144