QSAR Modeling of SARS‐CoV Mpro Inhibitors Identifies Sufugolix, Cenicriviroc, Proglumetacin, and other Drugs as Candidates for Repurposing against SARS‐CoV‐2

药物数据库 药物重新定位 虚拟筛选 重新调整用途 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 计算生物学 2019年冠状病毒病(COVID-19) 对接(动物) 药物发现 计算机科学 生物信息学 医学 药品 生物 药理学 传染病(医学专业) 病理 护理部 疾病 生态学
作者
Vinícius M. Alves,Tesia Bobrowski,Cleber C. Melo-Filho,Daniel Korn,Scott S. Auerbach,Charles Schmitt,Eugene Muratov,Alexander Tropsha
出处
期刊:Molecular Informatics [Wiley]
卷期号:40 (1) 被引量:56
标识
DOI:10.1002/minf.202000113
摘要

The main protease (Mpro) of the SARS-CoV-2 has been proposed as one of the major drug targets for COVID-19. We have identified the experimental data on the inhibitory activity of compounds tested against the closely related (96 % sequence identity, 100 % active site conservation) Mpro of SARS-CoV. We developed QSAR models of these inhibitors and employed these models for virtual screening of all drugs in the DrugBank database. Similarity searching and molecular docking were explored in parallel, but docking failed to correctly discriminate between experimentally active and inactive compounds, so it was not relied upon for prospective virtual screening. Forty-two compounds were identified by our models as consensus computational hits. Subsequent to our computational studies, NCATS reported the results of experimental screening of their drug collection in SARS-CoV-2 cytopathic effect assay (https://opendata.ncats.nih.gov/covid19/). Coincidentally, NCATS tested 11 of our 42 hits, and three of them, cenicriviroc (AC50 of 8.9 μM), proglumetacin (tested twice independently, with AC50 of 8.9 μM and 12.5 μM), and sufugolix (AC50 12.6 μM), were shown to be active. These observations support the value of our modeling approaches and models for guiding the experimental investigations of putative anti-COVID-19 drug candidates. All data and models used in this study are publicly available via Supplementary Materials, GitHub (https://github.com/alvesvm/sars-cov-mpro), and Chembench web portal (https://chembench.mml.unc.edu/).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助多米采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
领导范儿应助小壮采纳,获得10
刚刚
Hello应助abb采纳,获得10
刚刚
Twonej应助coding采纳,获得400
1秒前
smottom应助ymxq采纳,获得10
1秒前
zzz完成签到,获得积分10
2秒前
2秒前
roooosewang发布了新的文献求助10
2秒前
cdbb发布了新的文献求助10
2秒前
2秒前
优雅砖家完成签到,获得积分10
2秒前
3秒前
ding应助xiaoju采纳,获得10
3秒前
3秒前
YR应助Certainty橙子采纳,获得20
3秒前
哀莫丶哀生完成签到 ,获得积分10
3秒前
太阳雨发布了新的文献求助10
3秒前
3秒前
Hello应助孔明采纳,获得10
4秒前
4秒前
huaming发布了新的文献求助10
4秒前
bkagyin应助syy080837采纳,获得10
5秒前
九bai发布了新的文献求助10
5秒前
5秒前
Vita完成签到,获得积分10
5秒前
wxx完成签到,获得积分10
6秒前
6秒前
田盐盐发布了新的文献求助10
6秒前
研友_84WJXZ发布了新的文献求助10
6秒前
rikii完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
roooosewang完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
搜集达人应助健达奇趣蛋采纳,获得10
7秒前
zzy完成签到,获得积分10
7秒前
晚阳应助bingbing采纳,获得30
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210