QSAR Modeling of SARS‐CoV Mpro Inhibitors Identifies Sufugolix, Cenicriviroc, Proglumetacin, and other Drugs as Candidates for Repurposing against SARS‐CoV‐2

药物数据库 药物重新定位 虚拟筛选 重新调整用途 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 计算生物学 2019年冠状病毒病(COVID-19) 对接(动物) 药物发现 计算机科学 生物信息学 医学 药品 生物 药理学 传染病(医学专业) 病理 护理部 疾病 生态学
作者
Vinícius M. Alves,Tesia Bobrowski,Cleber C. Melo-Filho,Daniel Korn,Scott S. Auerbach,Charles Schmitt,Eugene Muratov,Alexander Tropsha
出处
期刊:Molecular Informatics [Wiley]
卷期号:40 (1) 被引量:56
标识
DOI:10.1002/minf.202000113
摘要

The main protease (Mpro) of the SARS-CoV-2 has been proposed as one of the major drug targets for COVID-19. We have identified the experimental data on the inhibitory activity of compounds tested against the closely related (96 % sequence identity, 100 % active site conservation) Mpro of SARS-CoV. We developed QSAR models of these inhibitors and employed these models for virtual screening of all drugs in the DrugBank database. Similarity searching and molecular docking were explored in parallel, but docking failed to correctly discriminate between experimentally active and inactive compounds, so it was not relied upon for prospective virtual screening. Forty-two compounds were identified by our models as consensus computational hits. Subsequent to our computational studies, NCATS reported the results of experimental screening of their drug collection in SARS-CoV-2 cytopathic effect assay (https://opendata.ncats.nih.gov/covid19/). Coincidentally, NCATS tested 11 of our 42 hits, and three of them, cenicriviroc (AC50 of 8.9 μM), proglumetacin (tested twice independently, with AC50 of 8.9 μM and 12.5 μM), and sufugolix (AC50 12.6 μM), were shown to be active. These observations support the value of our modeling approaches and models for guiding the experimental investigations of putative anti-COVID-19 drug candidates. All data and models used in this study are publicly available via Supplementary Materials, GitHub (https://github.com/alvesvm/sars-cov-mpro), and Chembench web portal (https://chembench.mml.unc.edu/).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lk完成签到,获得积分20
刚刚
炒鸡小将发布了新的文献求助10
1秒前
马路完成签到 ,获得积分10
2秒前
再慕完成签到,获得积分10
3秒前
guangshuang发布了新的文献求助10
3秒前
眯眯眼的衬衫应助小淘气采纳,获得10
7秒前
JamesPei应助aaaaa采纳,获得10
8秒前
CAOHOU举报细心小鸭子求助涉嫌违规
10秒前
Merlin应助Zack采纳,获得30
11秒前
奋斗向南完成签到,获得积分10
11秒前
雪碧发布了新的文献求助20
11秒前
Hello应助坚强的赛凤采纳,获得10
11秒前
志轩应助李锐采纳,获得10
12秒前
酷炫鑫完成签到,获得积分10
13秒前
14秒前
小比熊完成签到,获得积分10
15秒前
16秒前
16秒前
17秒前
17秒前
18秒前
Rondab应助科研通管家采纳,获得10
18秒前
18秒前
Rondab应助科研通管家采纳,获得10
18秒前
所所应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
18秒前
李健应助科研通管家采纳,获得10
18秒前
丘比特应助科研通管家采纳,获得10
19秒前
走四方应助科研通管家采纳,获得20
19秒前
19秒前
科目三应助科研通管家采纳,获得10
19秒前
潇洒应助科研通管家采纳,获得10
19秒前
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
酷波er应助李锐采纳,获得10
19秒前
研友_VZG7GZ应助李锐采纳,获得10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959141
求助须知:如何正确求助?哪些是违规求助? 3505468
关于积分的说明 11123941
捐赠科研通 3237159
什么是DOI,文献DOI怎么找? 1788988
邀请新用户注册赠送积分活动 871478
科研通“疑难数据库(出版商)”最低求助积分说明 802824