QSAR Modeling of SARS‐CoV Mpro Inhibitors Identifies Sufugolix, Cenicriviroc, Proglumetacin, and other Drugs as Candidates for Repurposing against SARS‐CoV‐2

药物数据库 药物重新定位 虚拟筛选 重新调整用途 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 计算生物学 2019年冠状病毒病(COVID-19) 对接(动物) 药物发现 计算机科学 生物信息学 医学 药品 生物 药理学 传染病(医学专业) 病理 护理部 疾病 生态学
作者
Vinícius M. Alves,Tesia Bobrowski,Cleber C. Melo-Filho,Daniel Korn,Scott S. Auerbach,Charles Schmitt,Eugene Muratov,Alexander Tropsha
出处
期刊:Molecular Informatics [Wiley]
卷期号:40 (1) 被引量:56
标识
DOI:10.1002/minf.202000113
摘要

The main protease (Mpro) of the SARS-CoV-2 has been proposed as one of the major drug targets for COVID-19. We have identified the experimental data on the inhibitory activity of compounds tested against the closely related (96 % sequence identity, 100 % active site conservation) Mpro of SARS-CoV. We developed QSAR models of these inhibitors and employed these models for virtual screening of all drugs in the DrugBank database. Similarity searching and molecular docking were explored in parallel, but docking failed to correctly discriminate between experimentally active and inactive compounds, so it was not relied upon for prospective virtual screening. Forty-two compounds were identified by our models as consensus computational hits. Subsequent to our computational studies, NCATS reported the results of experimental screening of their drug collection in SARS-CoV-2 cytopathic effect assay (https://opendata.ncats.nih.gov/covid19/). Coincidentally, NCATS tested 11 of our 42 hits, and three of them, cenicriviroc (AC50 of 8.9 μM), proglumetacin (tested twice independently, with AC50 of 8.9 μM and 12.5 μM), and sufugolix (AC50 12.6 μM), were shown to be active. These observations support the value of our modeling approaches and models for guiding the experimental investigations of putative anti-COVID-19 drug candidates. All data and models used in this study are publicly available via Supplementary Materials, GitHub (https://github.com/alvesvm/sars-cov-mpro), and Chembench web portal (https://chembench.mml.unc.edu/).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助旺旺采纳,获得10
刚刚
柿子完成签到 ,获得积分10
刚刚
刚刚
engine完成签到,获得积分10
刚刚
调皮的大炮完成签到 ,获得积分10
刚刚
1秒前
1秒前
Hong完成签到 ,获得积分10
1秒前
儒雅非笑发布了新的文献求助10
1秒前
甜菜完成签到,获得积分10
1秒前
2秒前
小巧的平露完成签到,获得积分20
2秒前
思源应助快乐的访烟采纳,获得10
2秒前
Orange应助噜噜大王采纳,获得10
2秒前
3秒前
3秒前
3秒前
3秒前
qing完成签到,获得积分20
3秒前
尊敬怀薇完成签到,获得积分10
4秒前
4秒前
黄瓜仔发布了新的文献求助10
5秒前
5秒前
gy发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
JOYO欣完成签到,获得积分10
7秒前
YYY发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
爆米花应助ZIYU采纳,获得10
8秒前
ss发布了新的文献求助10
8秒前
dique3hao发布了新的文献求助10
8秒前
8秒前
9秒前
气质复杂发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444