QSAR Modeling of SARS‐CoV Mpro Inhibitors Identifies Sufugolix, Cenicriviroc, Proglumetacin, and other Drugs as Candidates for Repurposing against SARS‐CoV‐2

药物数据库 药物重新定位 虚拟筛选 重新调整用途 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 计算生物学 2019年冠状病毒病(COVID-19) 对接(动物) 药物发现 计算机科学 生物信息学 医学 药品 生物 药理学 传染病(医学专业) 病理 护理部 疾病 生态学
作者
Vinícius M. Alves,Tesia Bobrowski,Cleber C. Melo-Filho,Daniel Korn,Scott S. Auerbach,Charles Schmitt,Eugene Muratov,Alexander Tropsha
出处
期刊:Molecular Informatics [Wiley]
卷期号:40 (1) 被引量:56
标识
DOI:10.1002/minf.202000113
摘要

The main protease (Mpro) of the SARS-CoV-2 has been proposed as one of the major drug targets for COVID-19. We have identified the experimental data on the inhibitory activity of compounds tested against the closely related (96 % sequence identity, 100 % active site conservation) Mpro of SARS-CoV. We developed QSAR models of these inhibitors and employed these models for virtual screening of all drugs in the DrugBank database. Similarity searching and molecular docking were explored in parallel, but docking failed to correctly discriminate between experimentally active and inactive compounds, so it was not relied upon for prospective virtual screening. Forty-two compounds were identified by our models as consensus computational hits. Subsequent to our computational studies, NCATS reported the results of experimental screening of their drug collection in SARS-CoV-2 cytopathic effect assay (https://opendata.ncats.nih.gov/covid19/). Coincidentally, NCATS tested 11 of our 42 hits, and three of them, cenicriviroc (AC50 of 8.9 μM), proglumetacin (tested twice independently, with AC50 of 8.9 μM and 12.5 μM), and sufugolix (AC50 12.6 μM), were shown to be active. These observations support the value of our modeling approaches and models for guiding the experimental investigations of putative anti-COVID-19 drug candidates. All data and models used in this study are publicly available via Supplementary Materials, GitHub (https://github.com/alvesvm/sars-cov-mpro), and Chembench web portal (https://chembench.mml.unc.edu/).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ff完成签到 ,获得积分10
2秒前
2秒前
乐乐应助暖吱采纳,获得20
8秒前
受伤的平安完成签到,获得积分10
9秒前
ZeKaWa应助linlin采纳,获得10
11秒前
19秒前
23秒前
tianya完成签到,获得积分10
24秒前
25秒前
烟花应助标致的妙晴采纳,获得10
26秒前
浮游应助朴素的松采纳,获得10
28秒前
28秒前
29秒前
加百莉发布了新的文献求助10
30秒前
cancan发布了新的文献求助10
31秒前
伯言发布了新的文献求助10
36秒前
元谷雪应助陈帅采纳,获得10
37秒前
初雪完成签到,获得积分10
38秒前
花花花花完成签到 ,获得积分10
43秒前
45秒前
46秒前
肉肉完成签到 ,获得积分10
46秒前
cancan完成签到,获得积分10
47秒前
zhuangbaobao发布了新的文献求助10
50秒前
郭6666发布了新的文献求助10
51秒前
完美世界应助留胡子的火采纳,获得10
56秒前
脑洞疼应助郭6666采纳,获得10
56秒前
公冶愚志完成签到,获得积分10
59秒前
威武的皮卡丘完成签到,获得积分10
1分钟前
1分钟前
1分钟前
大龙哥886应助ri_290采纳,获得10
1分钟前
sevenhill应助Devastating采纳,获得10
1分钟前
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555