QSAR Modeling of SARS‐CoV Mpro Inhibitors Identifies Sufugolix, Cenicriviroc, Proglumetacin, and other Drugs as Candidates for Repurposing against SARS‐CoV‐2

药物数据库 药物重新定位 虚拟筛选 重新调整用途 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 计算生物学 2019年冠状病毒病(COVID-19) 对接(动物) 药物发现 计算机科学 生物信息学 医学 药品 生物 药理学 传染病(医学专业) 病理 护理部 疾病 生态学
作者
Vinícius M. Alves,Tesia Bobrowski,Cleber C. Melo-Filho,Daniel Korn,Scott S. Auerbach,Charles Schmitt,Eugene Muratov,Alexander Tropsha
出处
期刊:Molecular Informatics [Wiley]
卷期号:40 (1) 被引量:56
标识
DOI:10.1002/minf.202000113
摘要

The main protease (Mpro) of the SARS-CoV-2 has been proposed as one of the major drug targets for COVID-19. We have identified the experimental data on the inhibitory activity of compounds tested against the closely related (96 % sequence identity, 100 % active site conservation) Mpro of SARS-CoV. We developed QSAR models of these inhibitors and employed these models for virtual screening of all drugs in the DrugBank database. Similarity searching and molecular docking were explored in parallel, but docking failed to correctly discriminate between experimentally active and inactive compounds, so it was not relied upon for prospective virtual screening. Forty-two compounds were identified by our models as consensus computational hits. Subsequent to our computational studies, NCATS reported the results of experimental screening of their drug collection in SARS-CoV-2 cytopathic effect assay (https://opendata.ncats.nih.gov/covid19/). Coincidentally, NCATS tested 11 of our 42 hits, and three of them, cenicriviroc (AC50 of 8.9 μM), proglumetacin (tested twice independently, with AC50 of 8.9 μM and 12.5 μM), and sufugolix (AC50 12.6 μM), were shown to be active. These observations support the value of our modeling approaches and models for guiding the experimental investigations of putative anti-COVID-19 drug candidates. All data and models used in this study are publicly available via Supplementary Materials, GitHub (https://github.com/alvesvm/sars-cov-mpro), and Chembench web portal (https://chembench.mml.unc.edu/).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阔达板栗关注了科研通微信公众号
1秒前
zcz发布了新的文献求助30
1秒前
跳跃可仁完成签到,获得积分10
1秒前
2秒前
mumu完成签到,获得积分10
2秒前
3秒前
YY发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
丘比特应助明理的帆布鞋采纳,获得10
4秒前
我是老大应助俊逸的翅膀采纳,获得10
4秒前
5秒前
万能图书馆应助科研狗采纳,获得10
5秒前
yznfly应助欢喜夏之采纳,获得50
5秒前
5秒前
5秒前
wwwwww完成签到,获得积分10
5秒前
可靠幼旋发布了新的文献求助10
5秒前
5秒前
hahaagain完成签到,获得积分10
5秒前
丘比特应助傅取采纳,获得10
5秒前
6秒前
哈哈哈完成签到 ,获得积分10
6秒前
VVzza完成签到,获得积分20
7秒前
usu发布了新的文献求助10
7秒前
hyx7735完成签到,获得积分10
7秒前
努力挪砖完成签到,获得积分10
7秒前
Jasper应助alex采纳,获得10
8秒前
白白嫩嫩发布了新的文献求助20
8秒前
8秒前
8秒前
Darlene发布了新的文献求助10
8秒前
9秒前
传奇3应助曹佳凝采纳,获得10
9秒前
纯真芙发布了新的文献求助10
9秒前
hahaagain发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612993
求助须知:如何正确求助?哪些是违规求助? 4698217
关于积分的说明 14896593
捐赠科研通 4734695
什么是DOI,文献DOI怎么找? 2546766
邀请新用户注册赠送积分活动 1510830
关于科研通互助平台的介绍 1473494