QSAR Modeling of SARS‐CoV Mpro Inhibitors Identifies Sufugolix, Cenicriviroc, Proglumetacin, and other Drugs as Candidates for Repurposing against SARS‐CoV‐2

药物数据库 药物重新定位 虚拟筛选 重新调整用途 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 计算生物学 2019年冠状病毒病(COVID-19) 对接(动物) 药物发现 计算机科学 生物信息学 医学 药品 生物 药理学 传染病(医学专业) 病理 护理部 疾病 生态学
作者
Vinícius M. Alves,Tesia Bobrowski,Cleber C. Melo-Filho,Daniel Korn,Scott S. Auerbach,Charles Schmitt,Eugene Muratov,Alexander Tropsha
出处
期刊:Molecular Informatics [Wiley]
卷期号:40 (1) 被引量:56
标识
DOI:10.1002/minf.202000113
摘要

The main protease (Mpro) of the SARS-CoV-2 has been proposed as one of the major drug targets for COVID-19. We have identified the experimental data on the inhibitory activity of compounds tested against the closely related (96 % sequence identity, 100 % active site conservation) Mpro of SARS-CoV. We developed QSAR models of these inhibitors and employed these models for virtual screening of all drugs in the DrugBank database. Similarity searching and molecular docking were explored in parallel, but docking failed to correctly discriminate between experimentally active and inactive compounds, so it was not relied upon for prospective virtual screening. Forty-two compounds were identified by our models as consensus computational hits. Subsequent to our computational studies, NCATS reported the results of experimental screening of their drug collection in SARS-CoV-2 cytopathic effect assay (https://opendata.ncats.nih.gov/covid19/). Coincidentally, NCATS tested 11 of our 42 hits, and three of them, cenicriviroc (AC50 of 8.9 μM), proglumetacin (tested twice independently, with AC50 of 8.9 μM and 12.5 μM), and sufugolix (AC50 12.6 μM), were shown to be active. These observations support the value of our modeling approaches and models for guiding the experimental investigations of putative anti-COVID-19 drug candidates. All data and models used in this study are publicly available via Supplementary Materials, GitHub (https://github.com/alvesvm/sars-cov-mpro), and Chembench web portal (https://chembench.mml.unc.edu/).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
___赵发布了新的文献求助10
刚刚
茶米发布了新的文献求助10
1秒前
1秒前
科研通AI6应助内卷与外包采纳,获得10
6秒前
阿屁屁猪完成签到,获得积分10
6秒前
黄大完成签到,获得积分10
6秒前
冬冬完成签到,获得积分10
7秒前
hhhhhhhh发布了新的文献求助10
7秒前
8秒前
duoduo7发布了新的文献求助10
8秒前
Mic发布了新的文献求助10
8秒前
黑马王子发布了新的文献求助10
9秒前
11秒前
13秒前
tutou发布了新的文献求助10
15秒前
惊艳发布了新的文献求助20
15秒前
共享精神应助迷路的台灯采纳,获得10
15秒前
16秒前
烦恼全吴完成签到 ,获得积分10
16秒前
EnjieLin完成签到,获得积分10
16秒前
17秒前
Mic完成签到,获得积分10
18秒前
超级翰完成签到 ,获得积分10
18秒前
科研通AI2S应助sc采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
shuxi完成签到,获得积分10
20秒前
稳重晓亦完成签到,获得积分10
21秒前
wxyshare应助wv采纳,获得10
22秒前
zyx完成签到,获得积分10
23秒前
wsc应助无情南琴采纳,获得20
23秒前
24秒前
25秒前
斯文败类应助水下月采纳,获得10
25秒前
FashionBoy应助无聊采纳,获得10
25秒前
FashionBoy应助琳io采纳,获得10
25秒前
25秒前
科研通AI6应助duoduo7采纳,获得10
25秒前
虚拟的雪枫完成签到 ,获得积分10
27秒前
科研通AI6应助tutou采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536782
求助须知:如何正确求助?哪些是违规求助? 4624440
关于积分的说明 14592026
捐赠科研通 4564913
什么是DOI,文献DOI怎么找? 2502020
邀请新用户注册赠送积分活动 1480820
关于科研通互助平台的介绍 1452003