清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

End-to-End Autonomous Driving Risk Analysis: A Behavioural Anomaly Detection Approach

更安全的 计算机科学 标杆管理 风险分析(工程) 异常检测 人工智能 机器学习 计算机安全 业务 营销
作者
Cian Ryan,Finbarr Murphy,Martin Mullins
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:22 (3): 1650-1662 被引量:40
标识
DOI:10.1109/tits.2020.2975043
摘要

Autonomous vehicles (AV) have advanced considerably over the past decade and their potential to reduce road accidents is without equal. That said, the evolution towards fully automated driving will be accompanied by new and unfamiliar risks. The deployment of AVs hinges on the premise that they are considerably safer than human drivers. However, the ability of manufacturers, insurers and regulators to quantifiably demonstrate this risk reduction, relative to humans, presents a major barrier. Based on accident rates, it will likely take hundreds of millions of autonomous miles to derive statistically meaningful results. This paper addresses this issue and proposes a novel means of quantifying AV accident risks by benchmarking against a more familiar and quantifiable risk - Human Behaviour. This method is used to proactively quantify AV safety relative to human drivers. Currently, anomalous driving behaviour stems from human susceptibilities such as fatigue or aggression. We exploit this observation and explore AV driving behaviour where driving anomalies are symptoms of technology errors. The comparative behaviours of AV and safe human driving can be used to measure AV accident risk. An end-to-end model AV is simulated using Convolutional Neural Networks (CNN) to compare human and AV driving behaviours. Using a machine learning technique called Gaussian Processes (GP), contextual driving anomalies are detected, the frequency and severity of which are used to derive a risk score. This paper offers a starting point for addressing the challenges surrounding AV risk modelling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
34秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
1分钟前
我好哇塞发布了新的文献求助10
1分钟前
1分钟前
1分钟前
田様应助我好哇塞采纳,获得10
1分钟前
2分钟前
chyx发布了新的文献求助10
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
4分钟前
北国雪未消完成签到 ,获得积分10
5分钟前
清秀的怀蕊完成签到 ,获得积分0
5分钟前
QCB完成签到 ,获得积分10
5分钟前
丹妮完成签到 ,获得积分10
5分钟前
大熊完成签到 ,获得积分10
5分钟前
back you up完成签到 ,获得积分0
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
欣忆完成签到 ,获得积分10
6分钟前
人类繁殖学完成签到 ,获得积分10
6分钟前
斯文败类应助矢思然采纳,获得10
6分钟前
7分钟前
满意的伊完成签到,获得积分10
7分钟前
矢思然发布了新的文献求助10
7分钟前
8分钟前
华仔应助科研通管家采纳,获得10
8分钟前
elimelec发布了新的文献求助10
8分钟前
科研通AI5应助Wfmmm采纳,获得10
8分钟前
田様应助Wfmmm采纳,获得10
9分钟前
wyhhh完成签到,获得积分10
9分钟前
完美世界应助ivyjianjie采纳,获得10
9分钟前
执着夏山完成签到,获得积分10
10分钟前
淡定的水彤完成签到,获得积分10
11分钟前
Kevin完成签到,获得积分10
11分钟前
11分钟前
ivyjianjie发布了新的文献求助10
11分钟前
Orange应助ivyjianjie采纳,获得10
11分钟前
krajicek完成签到,获得积分10
12分钟前
余呀余完成签到 ,获得积分10
14分钟前
14分钟前
ivyjianjie发布了新的文献求助10
14分钟前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3709142
求助须知:如何正确求助?哪些是违规求助? 3257286
关于积分的说明 9904304
捐赠科研通 2970204
什么是DOI,文献DOI怎么找? 1629041
邀请新用户注册赠送积分活动 772427
科研通“疑难数据库(出版商)”最低求助积分说明 743791