纳米流体
切削液
材料科学
纳米颗粒
机械加工
润滑
复合材料
热稳定性
纳米-
化学工程
冶金
纳米技术
工程类
作者
Srinu Gugulothu,P. Vamsi Krishna
出处
期刊:Journal of Testing and Evaluation
[ASTM International]
日期:2018-11-28
卷期号:48 (5): 3839-3854
被引量:7
摘要
Abstract The purpose of synthesizing hybrid nano cutting fluid is to improve the thermal conductivity and effective heat transfer coefficient of nanofluid containing single nanoparticles. This may be useful for making machining more efficient. In the present work, different vegetable-oil–based hybrid nano cutting fluids are formulated by dispersing carbon nanotubes/boric acid and carbon nanotubes/molybdenum disulfide (CNT/MoS2) nanoparticles in sesame, neem, and mahua oils at 1 % weight, with surfactants in hybrid ratios of 1:1, 1:2, and 2:1, respectively. Three different surfactants, sodium dodecyl sulfate (SDS), TritonX100, and Tween80, are used in the preparation of the different hybrid nano cutting fluids. Samples are prepared based on Taguchi’s L9 orthogonal array to identify the optimum combination of elements for better stability. The stability of the formulated fluids is evaluated through a sedimentation test and zeta potential test. Density and kinematic viscosity are measured for the prepared hybrid nano cutting fluid samples. Sesame-oil–based hybrid nano cutting fluid with CNT/MoS2 hybrid nanoparticles with 1:2 hybrid ratio at 15 % concentration of SDS surfactant by weight of nanoparticles has shown to have better stability. Machining is performed using stable hybrid nano cutting fluid in a minimum quantity lubrication during turning of AISI 1040 steel with uncoated carbide tools. Machining performance is improved with hybrid nano cutting fluid in terms of cutting force, temperature, surface roughness, and tool flank wear compared to dry and conventional cutting fluid.
科研通智能强力驱动
Strongly Powered by AbleSci AI