Effectiveness comparisons of various psychosocial therapies for children and adolescents with depression: a Bayesian network meta-analysis

心理学 萧条(经济学) 精神科 焦虑
作者
Jing-Hong Liang,Jing Li,Rong-Kun Wu,Jia-yu Li,Sheng Qian,Rui-xia Jia,Ying-quan Wang,Yu-xi Qian,Yong Xu
出处
期刊:European Child & Adolescent Psychiatry [Springer Nature]
卷期号:30 (5): 685-697 被引量:4
标识
DOI:10.1007/s00787-020-01492-w
摘要

The existence of depression among children or adolescents can trigger a sequence of burdens on themselves, their families and even the whole society, which cause both physical and economic impacts. Our network meta-analysis (NMA) was aimed at comparing them with each other for evaluating the optimal psychosocial therapy to help children and adolescents with depression to improve their mental health. Based on several biomedical databases, a system of search strategies was conducted for searching randomized controlled trials (RCTs) which published from their inception on October, 1st 2018 without language restriction. We carried out an expression analysis for comparing the efficacy of various psychosocial therapies using Bayesian NMA. A battery of analyses and assessments, such as conventional meta-analysis and risk of bias, were performed concurrently. Only 32 of RCTs which involved 2677 participants were eventually included in our analyses from the 19,176 of initial citation screening. In addition, in terms of various valid assessment instruments, interpersonal psychotherapy [standard mean difference (SMD) = −1.38, Credible interval (CrI) − 2.5, − 0.20)], computer cognitive–behavioral therapy (SMD = −1.36, CrI − 2.59, − 0.14), cognitive–behavioral therapy (SMD = −1.16, CrI − 2.15, − 0.18), had significantly better effects than the named control group. All together, these results suggest that interpersonal psychotherapy might be the best approach to improve the depressive state among children and adolescents. This study may provide an excellent resource for future endeavors to utilize psychosocial interventions and may also serve as a springboard for creative undertakings as yet unknown.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
111完成签到,获得积分10
1秒前
科研通AI6应助得唔闻采纳,获得30
2秒前
潇洒凡柔完成签到 ,获得积分10
2秒前
goodsheep完成签到 ,获得积分10
2秒前
阿司匹林完成签到,获得积分20
2秒前
科研通AI2S应助JJ采纳,获得10
2秒前
hei完成签到 ,获得积分10
2秒前
4秒前
华仔应助kinizu采纳,获得30
4秒前
风趣的涵柏完成签到,获得积分10
4秒前
4秒前
xuexue完成签到,获得积分10
5秒前
橘子味的橙子完成签到,获得积分10
5秒前
sx完成签到,获得积分10
5秒前
5秒前
研友_599Y85完成签到,获得积分10
5秒前
橘子的哈哈怪完成签到,获得积分10
6秒前
6秒前
刘艺娜完成签到,获得积分10
6秒前
鼠性社恐患者完成签到,获得积分10
7秒前
magic完成签到 ,获得积分10
7秒前
妙木仙完成签到,获得积分10
7秒前
callmekar发布了新的文献求助10
7秒前
nihaoya完成签到,获得积分10
8秒前
无职完成签到,获得积分10
8秒前
D调的华丽完成签到,获得积分10
8秒前
8秒前
W1nk发布了新的文献求助10
8秒前
张晓芮完成签到 ,获得积分10
9秒前
9秒前
11发布了新的文献求助10
9秒前
撒玉完成签到,获得积分10
9秒前
a553355完成签到,获得积分10
9秒前
晕倒一下发布了新的文献求助10
10秒前
许多多完成签到,获得积分10
10秒前
10秒前
YY-Bubble完成签到,获得积分10
10秒前
ky完成签到,获得积分10
10秒前
yukang完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482803
求助须知:如何正确求助?哪些是违规求助? 4583511
关于积分的说明 14390213
捐赠科研通 4512809
什么是DOI,文献DOI怎么找? 2473255
邀请新用户注册赠送积分活动 1459255
关于科研通互助平台的介绍 1432883