已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated patient-specific and organ-based image quality metrics on dual-energy CT datasets for large scale studies

计算机科学 人工智能 图像质量 分割 计算机视觉 图像分割 模式识别(心理学) 迭代重建 噪音(视频) 图像(数学)
作者
Wanyi Fu,Juan Carlos Ramírez-Giraldo,Daniele Marin,Taylor B. Smith,Thomas Sauer,Yuqin Ding,Ehsan Samei
标识
DOI:10.1117/12.2582231
摘要

The purpose of this study was to develop an automated patient-specific and organ-based image quality (IQ) assessment tool for dual energy (DE) computed tomography (CT) images for large scale clinical analysis. To demonstrate its utility, this tool was used to compare the image quality of virtual monoenergetic images (VMI) with mixed images. The tool combines an automated organ segmentation model developed to segment key organs of interest and a patient-based IQ assessment model. The organ segmentation model was reported in our previous study and used to segment liver in this study; specifically, the model used 3D Unet architecture, developed by training on 200 manually labeled CT cases. We used task-based image quality assessment to define a spectral detectability index (ds'), which enables the task definition to be lesion with specific contrast properties depending on DE reconstruction chosen. For actual testing of the tool, this study included 322 abdominopelvic DECT examinations acquired with dual-source CT. Within regions of segmented organ volumes, the IQ assessment tool automatically measures noise and calculates the spectral dependent detectability index (ds') for a detection task (i.e., liver lesion). This organ-based IQ tool was used to compare the image quality of DE images including VMIs at 50 keV, 70 keV and mixed images. Compared to mixed images, the results showed that VMI at 70 keV had better or equivalent spectral detectability index (difference 12.62±2.95%), while 50 keV images showed improved detectability index (61.62±10.23%). The ability to automatically assess image quality on a patient-specific and organ-based level may facilitate large scale clinical analysis, standardization, and optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助dengdengdeng采纳,获得10
4秒前
5秒前
莫名乐乐完成签到,获得积分10
5秒前
Delight完成签到 ,获得积分10
6秒前
6秒前
Ava应助专注的小松鼠采纳,获得10
7秒前
绝尘发布了新的文献求助10
7秒前
dasaber发布了新的文献求助10
10秒前
酷波er应助blueming采纳,获得10
11秒前
11秒前
沁沁沁完成签到,获得积分10
12秒前
汉堡包应助谷秋采纳,获得10
13秒前
13秒前
SYLH应助凶狠的盼柳采纳,获得10
14秒前
深水中的阳光完成签到,获得积分10
14秒前
15秒前
脑洞疼应助JaSOmE采纳,获得10
16秒前
两匹皮完成签到,获得积分10
19秒前
zc发布了新的文献求助10
19秒前
21秒前
21秒前
22秒前
花影完成签到 ,获得积分20
22秒前
Liu完成签到,获得积分20
23秒前
李爱国应助ssssen采纳,获得10
23秒前
blueming发布了新的文献求助10
28秒前
skittles发布了新的文献求助20
30秒前
30秒前
33秒前
沁沁沁发布了新的文献求助10
33秒前
35秒前
超级无敌大顺利完成签到 ,获得积分10
38秒前
lqmentu完成签到,获得积分10
38秒前
39秒前
小机灵发布了新的文献求助10
39秒前
39秒前
luisa完成签到,获得积分10
40秒前
zzzzzzzzzzzzb完成签到,获得积分20
40秒前
40秒前
ssssen发布了新的文献求助10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745866
求助须知:如何正确求助?哪些是违规求助? 3288812
关于积分的说明 10060709
捐赠科研通 3005019
什么是DOI,文献DOI怎么找? 1650010
邀请新用户注册赠送积分活动 785727
科研通“疑难数据库(出版商)”最低求助积分说明 751216