Progranulin (PGRN) is a glycoprotein that is widely expressed among organs, including the central nervous system. PGRN insufficiency is involved in various neurodegenerative disorders such as frontotemporal dementia, Alzheimer's disease, and neuronal ceroid lipofuscinosis. One of the major causes of neuronal damage is hyperactivation of the cerebrum triggered by upregulation of excitatory systems. In the present study, we examined the possible involvement of PGRN in modulating excitability of the cerebrum using wild type and PGRN-deficient mice. First, we treated wild type and PGRN-deficient mice with seizure-inducible drugs, bicuculline or N-methyl-D-aspartate (NMDA), which provoke hyperexcitement of neurons. PGRN-deficient mice showed higher intensity of seizure and longer duration of convulsive behavior when treated with either bicuculline or NMDA. Next, we quantified the expression of NMDA receptor subunits in the hippocampus and cerebral cortex. The expression level of NR2A subunit protein was significantly higher in the hippocampus of PGRN-deficient mice, while no difference was observed in the cerebral cortex. On the other hand, mRNA levels of NMDA receptor subunits in the hippocampus were comparable or even lower in PGRN-deficient mice. These results suggest that PGRN modulates the excitability of the cerebrum by regulating at least partially the protein level of NMDA receptors in the hippocampus.