Non-invasive prediction of lung cancer histological types through exhaled breath analysis by UV-irradiated electronic nose and GC/QTOF/MS

气体分析呼吸 电子鼻 肺癌 呼气 肺病学 医学 内科学 色谱法 化学 放射科 材料科学 纳米技术
作者
Tarik Saidi,Mohammed Moufid,Kelvin de Jesús Beleño-Sáenz,Tesfalem Geremariam Welearegay,Nezha El Bari,Aylen Lisset Jaimes‐Mogollón,Radu Ionescu,Jamal Eddine Bourkadi,J. Benamor,Mustapha El Ftouh,Benachir Bouchikhi
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:311: 127932-127932 被引量:69
标识
DOI:10.1016/j.snb.2020.127932
摘要

Lung cancer (LC) is one of the most lethal diseases from the last decades. Accurate diagnosis of LC histology could lead to the prescription of personalized medical treatment to the affected subjects, which could reduce the mortality rate. We present here an experimental study performed in the pulmonology units of three hospitals from Morocco to non-invasively detect LC and predict LC histology via the analysis of the volatile organic compounds (VOCs) emitted through breathing. Gas chromatography coupled to a quadrupole time-of-flight mass spectrometer (GC/QTOF/MS) employed to detect the breath VOCs, revealed 30 discriminative VOCs in the breath of healthy subjects and LC patients; among them, 4 unique breath VOCs were found for the first time in the breath of LC patients, and could be used as new biomarkers for future LC diagnosis. Besides, an electronic nose (e-nose) system using a novel sensing technique in breath analysis, based on UV-irradiation of the gas sensors, was employed to characterize the overall composition of the collected breath samples, providing a satisfactory discrimination between the breath patterns of LC patients and healthy subjects. Importantly, the e-nose could further discriminate with high accuracy between the two types of LC (non-small cell LC and small cell LC), as well as between two of the major subtypes of non-small cell LC, namely squamous cell carcinoma (SCC) and adenocarcinoma (ADC). The reported results prove that breath analysis with chemical gas sensors and analytical techniques can provided an accurate mean for the non-invasive diagnosis of LC and LC histology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lx发布了新的文献求助10
1秒前
2秒前
高贵的映安完成签到,获得积分10
3秒前
4秒前
好巧完成签到,获得积分10
4秒前
sss发布了新的文献求助30
5秒前
5秒前
www发布了新的文献求助10
6秒前
声声入耳完成签到 ,获得积分10
6秒前
渡增越发布了新的文献求助10
7秒前
啥也不会啊完成签到,获得积分10
7秒前
浮游应助iuhgnor采纳,获得10
7秒前
完美世界应助学术小菜鸟采纳,获得10
8秒前
8秒前
8秒前
10秒前
慕青应助露西亚采纳,获得10
10秒前
10秒前
11秒前
负责的凝丹完成签到,获得积分10
11秒前
木木夕完成签到,获得积分10
12秒前
DaleG发布了新的文献求助10
13秒前
zhaojinming发布了新的文献求助10
14秒前
14秒前
英俊的铭应助www采纳,获得10
15秒前
落叶完成签到 ,获得积分10
15秒前
夜已深完成签到,获得积分10
15秒前
科研通AI6应助行云采纳,获得10
16秒前
lx发布了新的文献求助10
17秒前
18秒前
Hello应助老迟到的访文采纳,获得10
18秒前
义气幼珊发布了新的文献求助10
18秒前
20秒前
20秒前
回复对方完成签到,获得积分10
20秒前
研友_Ljb0qL完成签到,获得积分10
24秒前
天天快乐应助渡增越采纳,获得20
24秒前
25秒前
Akihi完成签到,获得积分20
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5328673
求助须知:如何正确求助?哪些是违规求助? 4468375
关于积分的说明 13904790
捐赠科研通 4361352
什么是DOI,文献DOI怎么找? 2395710
邀请新用户注册赠送积分活动 1389235
关于科研通互助平台的介绍 1360022