Non-invasive prediction of lung cancer histological types through exhaled breath analysis by UV-irradiated electronic nose and GC/QTOF/MS

气体分析呼吸 电子鼻 肺癌 呼气 肺病学 医学 内科学 色谱法 化学 放射科 材料科学 纳米技术
作者
Tarik Saidi,Mohammed Moufid,Kelvin de Jesús Beleño-Sáenz,Tesfalem Geremariam Welearegay,Nezha El Bari,Aylen Lisset Jaimes‐Mogollón,Radu Ionescu,Jamal Eddine Bourkadi,J. Benamor,Mustapha El Ftouh,Benachir Bouchikhi
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:311: 127932-127932 被引量:69
标识
DOI:10.1016/j.snb.2020.127932
摘要

Lung cancer (LC) is one of the most lethal diseases from the last decades. Accurate diagnosis of LC histology could lead to the prescription of personalized medical treatment to the affected subjects, which could reduce the mortality rate. We present here an experimental study performed in the pulmonology units of three hospitals from Morocco to non-invasively detect LC and predict LC histology via the analysis of the volatile organic compounds (VOCs) emitted through breathing. Gas chromatography coupled to a quadrupole time-of-flight mass spectrometer (GC/QTOF/MS) employed to detect the breath VOCs, revealed 30 discriminative VOCs in the breath of healthy subjects and LC patients; among them, 4 unique breath VOCs were found for the first time in the breath of LC patients, and could be used as new biomarkers for future LC diagnosis. Besides, an electronic nose (e-nose) system using a novel sensing technique in breath analysis, based on UV-irradiation of the gas sensors, was employed to characterize the overall composition of the collected breath samples, providing a satisfactory discrimination between the breath patterns of LC patients and healthy subjects. Importantly, the e-nose could further discriminate with high accuracy between the two types of LC (non-small cell LC and small cell LC), as well as between two of the major subtypes of non-small cell LC, namely squamous cell carcinoma (SCC) and adenocarcinoma (ADC). The reported results prove that breath analysis with chemical gas sensors and analytical techniques can provided an accurate mean for the non-invasive diagnosis of LC and LC histology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙刚完成签到 ,获得积分10
1秒前
2秒前
Akim应助feifan159采纳,获得10
6秒前
alter_mu发布了新的文献求助10
9秒前
我本人lrx完成签到 ,获得积分10
13秒前
大模型应助alter_mu采纳,获得10
17秒前
量子星尘发布了新的文献求助10
18秒前
grace完成签到 ,获得积分10
20秒前
子车茗应助轻松的蜜粉采纳,获得50
23秒前
24秒前
24秒前
alter_mu完成签到,获得积分10
28秒前
feifan159发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
31秒前
32秒前
轻松的蜜粉完成签到,获得积分10
32秒前
热情爆米花完成签到 ,获得积分10
33秒前
36秒前
整齐百褶裙完成签到 ,获得积分10
37秒前
宁123完成签到 ,获得积分10
39秒前
爱听歌的青筠完成签到,获得积分10
40秒前
乐正怡完成签到 ,获得积分10
51秒前
Spice完成签到 ,获得积分10
51秒前
量子星尘发布了新的文献求助10
57秒前
又壮了完成签到 ,获得积分10
58秒前
lllIllllIll完成签到,获得积分10
1分钟前
优秀的白卉完成签到 ,获得积分10
1分钟前
土豪的灵竹完成签到 ,获得积分10
1分钟前
1分钟前
Alanni完成签到 ,获得积分10
1分钟前
科研通AI6应助麦子采纳,获得10
1分钟前
gyx完成签到 ,获得积分10
1分钟前
蛇蛇王子完成签到 ,获得积分10
1分钟前
兰花二狗他爹完成签到,获得积分10
1分钟前
椰子完成签到 ,获得积分10
1分钟前
乐天生完成签到,获得积分10
1分钟前
温婉的凝芙完成签到 ,获得积分10
1分钟前
斯文败类应助qyang采纳,获得10
1分钟前
lx完成签到,获得积分10
1分钟前
小果完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555124
求助须知:如何正确求助?哪些是违规求助? 4639662
关于积分的说明 14656533
捐赠科研通 4581657
什么是DOI,文献DOI怎么找? 2512907
邀请新用户注册赠送积分活动 1487593
关于科研通互助平台的介绍 1458623