清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Non-invasive prediction of lung cancer histological types through exhaled breath analysis by UV-irradiated electronic nose and GC/QTOF/MS

气体分析呼吸 电子鼻 肺癌 呼气 肺病学 医学 内科学 色谱法 化学 放射科 材料科学 纳米技术
作者
Tarik Saidi,Mohammed Moufid,Kelvin de Jesús Beleño-Sáenz,Tesfalem Geremariam Welearegay,Nezha El Bari,Aylen Lisset Jaimes‐Mogollón,Radu Ionescu,Jamal Eddine Bourkadi,J. Benamor,Mustapha El Ftouh,Benachir Bouchikhi
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:311: 127932-127932 被引量:69
标识
DOI:10.1016/j.snb.2020.127932
摘要

Lung cancer (LC) is one of the most lethal diseases from the last decades. Accurate diagnosis of LC histology could lead to the prescription of personalized medical treatment to the affected subjects, which could reduce the mortality rate. We present here an experimental study performed in the pulmonology units of three hospitals from Morocco to non-invasively detect LC and predict LC histology via the analysis of the volatile organic compounds (VOCs) emitted through breathing. Gas chromatography coupled to a quadrupole time-of-flight mass spectrometer (GC/QTOF/MS) employed to detect the breath VOCs, revealed 30 discriminative VOCs in the breath of healthy subjects and LC patients; among them, 4 unique breath VOCs were found for the first time in the breath of LC patients, and could be used as new biomarkers for future LC diagnosis. Besides, an electronic nose (e-nose) system using a novel sensing technique in breath analysis, based on UV-irradiation of the gas sensors, was employed to characterize the overall composition of the collected breath samples, providing a satisfactory discrimination between the breath patterns of LC patients and healthy subjects. Importantly, the e-nose could further discriminate with high accuracy between the two types of LC (non-small cell LC and small cell LC), as well as between two of the major subtypes of non-small cell LC, namely squamous cell carcinoma (SCC) and adenocarcinoma (ADC). The reported results prove that breath analysis with chemical gas sensors and analytical techniques can provided an accurate mean for the non-invasive diagnosis of LC and LC histology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sweet雪儿妞妞完成签到 ,获得积分10
15秒前
夜休2024完成签到 ,获得积分10
21秒前
SciGPT应助xing采纳,获得10
22秒前
27秒前
小石榴的爸爸完成签到 ,获得积分10
29秒前
xing完成签到,获得积分10
31秒前
小石榴爸爸完成签到 ,获得积分10
37秒前
顾矜应助掠影采纳,获得30
40秒前
zzz完成签到,获得积分10
42秒前
幻想小蜜蜂完成签到,获得积分10
49秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
掠影发布了新的文献求助30
1分钟前
snn完成签到 ,获得积分10
1分钟前
包子牛奶完成签到,获得积分10
1分钟前
掠影完成签到,获得积分10
2分钟前
2分钟前
666完成签到 ,获得积分10
2分钟前
似水流年完成签到 ,获得积分10
2分钟前
2分钟前
Java完成签到,获得积分10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
张杰列夫完成签到 ,获得积分10
3分钟前
jh完成签到 ,获得积分10
3分钟前
结实凌瑶完成签到 ,获得积分10
3分钟前
wanci应助hao采纳,获得10
3分钟前
3分钟前
hao发布了新的文献求助10
3分钟前
小乐完成签到,获得积分10
3分钟前
梦里的大子刊完成签到 ,获得积分10
3分钟前
Augenstern完成签到 ,获得积分10
3分钟前
4分钟前
欢喜的问凝完成签到 ,获得积分10
4分钟前
coding完成签到,获得积分10
4分钟前
852应助Liumingyu采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539082
求助须知:如何正确求助?哪些是违规求助? 4625935
关于积分的说明 14597077
捐赠科研通 4566725
什么是DOI,文献DOI怎么找? 2503520
邀请新用户注册赠送积分活动 1481524
关于科研通互助平台的介绍 1453018