已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Non-invasive prediction of lung cancer histological types through exhaled breath analysis by UV-irradiated electronic nose and GC/QTOF/MS

气体分析呼吸 电子鼻 肺癌 呼气 肺病学 医学 内科学 色谱法 化学 放射科 材料科学 纳米技术
作者
Tarik Saidi,Mohammed Moufid,Kelvin de Jesús Beleño-Sáenz,Tesfalem Geremariam Welearegay,Nezha El Bari,Aylen Lisset Jaimes‐Mogollón,Radu Ionescu,Jamal Eddine Bourkadi,J. Benamor,Mustapha El Ftouh,Benachir Bouchikhi
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:311: 127932-127932 被引量:69
标识
DOI:10.1016/j.snb.2020.127932
摘要

Lung cancer (LC) is one of the most lethal diseases from the last decades. Accurate diagnosis of LC histology could lead to the prescription of personalized medical treatment to the affected subjects, which could reduce the mortality rate. We present here an experimental study performed in the pulmonology units of three hospitals from Morocco to non-invasively detect LC and predict LC histology via the analysis of the volatile organic compounds (VOCs) emitted through breathing. Gas chromatography coupled to a quadrupole time-of-flight mass spectrometer (GC/QTOF/MS) employed to detect the breath VOCs, revealed 30 discriminative VOCs in the breath of healthy subjects and LC patients; among them, 4 unique breath VOCs were found for the first time in the breath of LC patients, and could be used as new biomarkers for future LC diagnosis. Besides, an electronic nose (e-nose) system using a novel sensing technique in breath analysis, based on UV-irradiation of the gas sensors, was employed to characterize the overall composition of the collected breath samples, providing a satisfactory discrimination between the breath patterns of LC patients and healthy subjects. Importantly, the e-nose could further discriminate with high accuracy between the two types of LC (non-small cell LC and small cell LC), as well as between two of the major subtypes of non-small cell LC, namely squamous cell carcinoma (SCC) and adenocarcinoma (ADC). The reported results prove that breath analysis with chemical gas sensors and analytical techniques can provided an accurate mean for the non-invasive diagnosis of LC and LC histology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
菜鸡游泳发布了新的文献求助10
3秒前
SiO2完成签到 ,获得积分0
4秒前
4秒前
君寻完成签到 ,获得积分10
5秒前
5秒前
5秒前
小蘑菇应助babalababa采纳,获得10
6秒前
6秒前
7秒前
中标发布了新的文献求助10
9秒前
9秒前
9秒前
公西凝芙发布了新的文献求助10
11秒前
13秒前
14秒前
14秒前
14秒前
Royal耗子完成签到,获得积分10
16秒前
haobhaobhaob发布了新的文献求助10
17秒前
18秒前
科研通AI5应助豆豆可采纳,获得10
18秒前
19秒前
Royal耗子发布了新的文献求助10
19秒前
慕青应助诺贝尔一直讲采纳,获得30
20秒前
公西凝芙完成签到,获得积分10
20秒前
科研通AI6应助弎夜采纳,获得30
20秒前
langqi发布了新的文献求助10
21秒前
Miya发布了新的文献求助30
21秒前
22秒前
haobhaobhaob完成签到,获得积分10
24秒前
凯蒂发布了新的文献求助10
25秒前
27秒前
哎健身发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
29秒前
momoni完成签到 ,获得积分10
29秒前
优秀的山芙关注了科研通微信公众号
30秒前
31秒前
豆豆可发布了新的文献求助10
33秒前
Olivia发布了新的文献求助10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610031
求助须知:如何正确求助?哪些是违规求助? 4016179
关于积分的说明 12434575
捐赠科研通 3697585
什么是DOI,文献DOI怎么找? 2038909
邀请新用户注册赠送积分活动 1071843
科研通“疑难数据库(出版商)”最低求助积分说明 955542