Non-invasive prediction of lung cancer histological types through exhaled breath analysis by UV-irradiated electronic nose and GC/QTOF/MS

气体分析呼吸 电子鼻 肺癌 呼气 肺病学 医学 内科学 色谱法 化学 放射科 材料科学 纳米技术
作者
Tarik Saidi,Mohammed Moufid,Kelvin de Jesús Beleño-Sáenz,Tesfalem Geremariam Welearegay,Nezha El Bari,Aylen Lisset Jaimes‐Mogollón,Radu Ionescu,Jamal Eddine Bourkadi,J. Benamor,Mustapha El Ftouh,Benachir Bouchikhi
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:311: 127932-127932 被引量:69
标识
DOI:10.1016/j.snb.2020.127932
摘要

Lung cancer (LC) is one of the most lethal diseases from the last decades. Accurate diagnosis of LC histology could lead to the prescription of personalized medical treatment to the affected subjects, which could reduce the mortality rate. We present here an experimental study performed in the pulmonology units of three hospitals from Morocco to non-invasively detect LC and predict LC histology via the analysis of the volatile organic compounds (VOCs) emitted through breathing. Gas chromatography coupled to a quadrupole time-of-flight mass spectrometer (GC/QTOF/MS) employed to detect the breath VOCs, revealed 30 discriminative VOCs in the breath of healthy subjects and LC patients; among them, 4 unique breath VOCs were found for the first time in the breath of LC patients, and could be used as new biomarkers for future LC diagnosis. Besides, an electronic nose (e-nose) system using a novel sensing technique in breath analysis, based on UV-irradiation of the gas sensors, was employed to characterize the overall composition of the collected breath samples, providing a satisfactory discrimination between the breath patterns of LC patients and healthy subjects. Importantly, the e-nose could further discriminate with high accuracy between the two types of LC (non-small cell LC and small cell LC), as well as between two of the major subtypes of non-small cell LC, namely squamous cell carcinoma (SCC) and adenocarcinoma (ADC). The reported results prove that breath analysis with chemical gas sensors and analytical techniques can provided an accurate mean for the non-invasive diagnosis of LC and LC histology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明芬发布了新的文献求助10
刚刚
维c泡腾片发布了新的文献求助10
2秒前
Nancy发布了新的文献求助10
2秒前
在水一方应助阳光棉花糖采纳,获得10
2秒前
2秒前
小李发布了新的文献求助30
3秒前
x1nger发布了新的文献求助10
3秒前
李昕123发布了新的文献求助20
4秒前
多多发布了新的文献求助10
4秒前
方大发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
鲤鱼大山发布了新的文献求助10
5秒前
huhuodan发布了新的文献求助10
5秒前
naikuizi发布了新的文献求助10
7秒前
8秒前
单纯的黑猫完成签到,获得积分20
8秒前
bkagyin应助tiantian采纳,获得10
8秒前
思源应助忧郁小白菜采纳,获得10
9秒前
x1nger完成签到,获得积分10
9秒前
9秒前
鲤黎黎发布了新的文献求助10
9秒前
9秒前
9秒前
思源应助silence采纳,获得10
10秒前
星辰大海应助F1reStone采纳,获得10
10秒前
11秒前
盈盈发布了新的文献求助10
11秒前
cindy完成签到,获得积分10
12秒前
12秒前
13秒前
开放谷芹发布了新的文献求助10
13秒前
Nancy完成签到,获得积分10
13秒前
lllllll完成签到,获得积分10
14秒前
打打应助悠雯采纳,获得10
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
huhuodan完成签到,获得积分10
15秒前
xxfsx应助黄婷萱采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430904
求助须知:如何正确求助?哪些是违规求助? 4543966
关于积分的说明 14190032
捐赠科研通 4462380
什么是DOI,文献DOI怎么找? 2446515
邀请新用户注册赠送积分活动 1437982
关于科研通互助平台的介绍 1414566