Non-invasive prediction of lung cancer histological types through exhaled breath analysis by UV-irradiated electronic nose and GC/QTOF/MS

气体分析呼吸 电子鼻 肺癌 呼气 肺病学 医学 内科学 色谱法 化学 放射科 材料科学 纳米技术
作者
Tarik Saidi,Mohammed Moufid,Kelvin de Jesús Beleño-Sáenz,Tesfalem Geremariam Welearegay,Nezha El Bari,Aylen Lisset Jaimes‐Mogollón,Radu Ionescu,Jamal Eddine Bourkadi,J. Benamor,Mustapha El Ftouh,Benachir Bouchikhi
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:311: 127932-127932 被引量:58
标识
DOI:10.1016/j.snb.2020.127932
摘要

Lung cancer (LC) is one of the most lethal diseases from the last decades. Accurate diagnosis of LC histology could lead to the prescription of personalized medical treatment to the affected subjects, which could reduce the mortality rate. We present here an experimental study performed in the pulmonology units of three hospitals from Morocco to non-invasively detect LC and predict LC histology via the analysis of the volatile organic compounds (VOCs) emitted through breathing. Gas chromatography coupled to a quadrupole time-of-flight mass spectrometer (GC/QTOF/MS) employed to detect the breath VOCs, revealed 30 discriminative VOCs in the breath of healthy subjects and LC patients; among them, 4 unique breath VOCs were found for the first time in the breath of LC patients, and could be used as new biomarkers for future LC diagnosis. Besides, an electronic nose (e-nose) system using a novel sensing technique in breath analysis, based on UV-irradiation of the gas sensors, was employed to characterize the overall composition of the collected breath samples, providing a satisfactory discrimination between the breath patterns of LC patients and healthy subjects. Importantly, the e-nose could further discriminate with high accuracy between the two types of LC (non-small cell LC and small cell LC), as well as between two of the major subtypes of non-small cell LC, namely squamous cell carcinoma (SCC) and adenocarcinoma (ADC). The reported results prove that breath analysis with chemical gas sensors and analytical techniques can provided an accurate mean for the non-invasive diagnosis of LC and LC histology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Ava应助Liexinun采纳,获得10
2秒前
知不道给123的求助进行了留言
2秒前
2秒前
zxj发布了新的文献求助10
4秒前
yixiaolou完成签到,获得积分10
4秒前
5秒前
NexusExplorer应助121采纳,获得10
5秒前
5秒前
6秒前
黑大帅发布了新的文献求助10
6秒前
rainnyday发布了新的文献求助20
6秒前
雪白代萱发布了新的文献求助10
6秒前
6秒前
6秒前
9秒前
9秒前
9秒前
呆瓜发布了新的文献求助150
10秒前
彭于晏应助msj采纳,获得30
10秒前
11秒前
mouxq发布了新的文献求助10
11秒前
11秒前
彭于晏应助留胡子的函采纳,获得10
11秒前
支翰完成签到 ,获得积分10
12秒前
一一发布了新的文献求助10
12秒前
13秒前
bitahu发布了新的文献求助10
13秒前
orixero应助小小采纳,获得10
13秒前
14秒前
14秒前
研友_VZG7GZ应助姜建正采纳,获得10
14秒前
鲜于夜白完成签到,获得积分10
16秒前
18秒前
酷波er应助无奈冬寒采纳,获得10
18秒前
18秒前
19秒前
鲜于夜白发布了新的文献求助10
19秒前
斯文败类应助孤独的迎滑采纳,获得10
19秒前
19秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129618
求助须知:如何正确求助?哪些是违规求助? 2780387
关于积分的说明 7747813
捐赠科研通 2435722
什么是DOI,文献DOI怎么找? 1294230
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570