An Automatic Method for Morphological Abnormality Detection in Metaphase II Human Oocyte Images

卵黄周隙 透明带 卵母细胞 计算机科学 人工智能 模式识别(心理学) 生物 胚胎 男科 细胞生物学 医学
作者
Sedighe Firuzinia,Seyed Abolghasem Mirroshandel,Fatemeh Ghasemian,Seyed Mahmoodreza Afzali
标识
DOI:10.1109/iccke48569.2019.8964838
摘要

The morphological evaluation of metaphase II (MII) oocytes before Intra-Cytoplasmic Sperm Injection (ICSI) can help to know and predict their developmental potential, the ICSI outcomes, and transfer the best embryo. The main morphometric features of MII oocytes are the thickness of zona pellucida, the width of perivitelline space, and the area of ooplasm and oocyte. Manual characterization of the MII oocytes can be prone to high inter-observer and intra-observer variability. In this study, we propose a fully automatic algorithm to identify malformations in images of human oocytes. 1500 images of MII oocytes were taken using inverted microscope before the ICSI process to build a dataset, namely the Human MII Oocyte Morphology Analysis Dataset (HMOMA-DS). The three main components of these prepared oocytes are analyzed. As the first step, we eliminated the noise and enhanced the quality of our input image. Further the regions were detected and segmented. Finally, the quality of the oocyte was assessed in terms of measuring the size and area of its main components. We have applied our method to the prepared dataset. It has been able to achieve an accuracy of 98.51% for the thickness of zona pellucida and area of oocyte. The accuracy values for measuring the area of ooplasm and the width of perivitelline space were 99.25% and 91.08%, respectively. The proposed fully automatic method performs effectively before ICSI due to its high accuracy and low computation time. It can help embryologists to select the best-qualified embryo based on the available analyzed parameters from injected oocytes in real-time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
657完成签到 ,获得积分10
刚刚
orixero应助活泼采纳,获得10
刚刚
刚刚
小二郎应助shi hui采纳,获得10
刚刚
刚刚
无情元灵发布了新的文献求助10
1秒前
1秒前
qq完成签到,获得积分20
1秒前
慕青应助要减肥金针菇采纳,获得10
1秒前
浮游应助东东呀采纳,获得10
1秒前
ojhhosh发布了新的文献求助10
1秒前
李林鑫完成签到 ,获得积分10
1秒前
Lee完成签到,获得积分10
2秒前
单纯的幻竹完成签到,获得积分10
2秒前
Owen应助木巳采纳,获得10
2秒前
在水一方应助zc采纳,获得10
2秒前
噗宝凹发布了新的文献求助10
2秒前
Qxx完成签到 ,获得积分10
3秒前
赘婿应助顺心绮兰采纳,获得10
3秒前
STH发布了新的文献求助10
3秒前
3秒前
Lucas应助zskyworth采纳,获得10
3秒前
坦率寻雪发布了新的文献求助10
4秒前
科研通AI2S应助my采纳,获得10
4秒前
浮游应助三水采纳,获得10
4秒前
恰饭睡觉发布了新的文献求助10
5秒前
冀君赏完成签到,获得积分10
5秒前
我到了啊完成签到,获得积分10
6秒前
我是老大应助www采纳,获得10
6秒前
6秒前
echo发布了新的文献求助50
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
优秀的离子键完成签到,获得积分10
8秒前
huhu发布了新的文献求助10
8秒前
JiangZaiqing完成签到,获得积分10
8秒前
坐标发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193007
求助须知:如何正确求助?哪些是违规求助? 4375799
关于积分的说明 13626640
捐赠科研通 4230400
什么是DOI,文献DOI怎么找? 2320393
邀请新用户注册赠送积分活动 1318798
关于科研通互助平台的介绍 1269105